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ABSTRACT

Chain-of-thought (CoT) reasoning applies to complex tasks with
multiple intermediate steps, a key feature of large language models.
Recent studies have revealed CoT as a composition of in-context
filtering and learning. This paper proposes a unified framework
for CoT optimization that exploits the nested problem structure to
formulate training as multilevel optimization. Each intermediate
reasoning step is a distinct optimization level. We develop an
epigraph-based multilevel optimization (EMO) method to iteratively
find the optimal solution for this class of problems. Experiments
using GPT-2 show that the proposed EMO achieves the lowest
generalization errors across all intermediate steps compared to
state-of-the-art, highlighting the importance of nested optimization
approaches for CoT reasoning.

Index Terms— Chain-of-thought (CoT), multilevel optimization
(MLO), epigraph-based multilevel optimization (EMO), large
language models (LLMs)

1. INTRODUCTION

Large language models (LLMs) with transformer architectures [1, 2]
demonstrate complex reasoning that captures dependencies over long
sequences [3]. LLMs excel at in-context learning, meaning that
once pre-trained, they can implicitly fine-tune based on new prompts
and generate high-quality sentences without updating the model
parameters [4, 5]. Self-attention is the mechanism that prioritizes
relevant features from the prompt, aligning them with learned features
to produce predictions [6–8].

LLM reasoning is enhanced when step-by-step instructions are
given [9]. For example, to learn the relationship y = (2x)2, a
composition of 2x and x2, a prompt like p : (x = 1, y = 4)
leaves the mapping from x to y ambiguous. If intermediate steps
are given, p : (x = 1, s = 2x = 2, y = s2 = 4), the relationship
is easier to learn due to the reduced ambiguity. The richer prompt
makes the model predictions more accurate and informative with
clear in-context meaning. A reasoner’s ability to reveal intermediate
steps is referred to as chain-of-thought (CoT) reasoning [9]. Circuit
complexity results [10] show that CoT prompting is necessary for
complex problems, such as dynamic programming (bounded-depth
Transformers fail unless the model size grows super-polynomially
in input length). By increasing the number of intermediate steps
Transformers become more expressive [11], e.g., Boolean circuits of
size K can be represented using O(K) CoT steps [12].

Even though the reasoning capability can be enhanced by the
CoT-style recursive decoding process, Transformer-based models are
still trained using traditional methods. As discussed in the existing
literature [13], CoT model training primarily focuses on minimizing

the sum of inference errors at each step, neglecting the chain structure
of the reasoning process. Motivated by the decoding procedure, it
is more reasonable to formulate CoT as a multilevel programming
problem, as the quality of each step depends on all preceding ones.
Therefore, the accuracy of the first step is more critical than that
of subsequent steps, with the same logic applying to the second,
third, and so on. However, solving multilevel optimization (MLO)
problems is challenging. Due to the nested structure, computing
the derivatives at each level requires higher-order information from
all lower-level loss functions [14], such as Jacobian or Hessian
inverse matrices, even in the bilevel case [15]. Several approaches,
including approximate implicit differentiation [16], recursive matrix
inversion-based gradient descent [17], the penalty-based method [18],
and the primal-dual method [19], have been developed to solve bilevel
optimization problems. However, when applying these methods to
MLO, it becomes necessary to compute complex implicit gradients
using second-order information from the loss functions [20, 21],
which makes the algorithms impractical for large-scale problems
due to increased computational complexity. Additionally, the nested
structure in MLO may cause the conditions required by existing
methods to fail, e.g., penalty methods. To the best of our knowledge,
none of the existing methods rely solely on first-order information to
solve MLO problems.

In this paper, we propose a nested structured training framework
to improve CoT reasoning capabilities. By leveraging constrained
optimization techniques, we introduce an epigraph-based multilevel
optimization (EMO) algorithm to solve this problem, applying
subgradient descent only to the maximum loss function across all
levels. Theoretical discussions show that EMO effectively addresses
nested multilevel model training problems, where the loss functions
at all levels are nonconvex and smooth, while providing theoretical
guarantees of convergence. Numerical experiments with GPT-2
demonstrate that when trained using this nested structure with EMO,
the model accurately outputs all intermediate inference steps for both
in-distribution and out-of-distribution (OOD) prompts, outperforming
the traditional single-level empirical risk minimization strategy. The
major contributions of this work are highlighted as follows:

▶ A new nested framework for CoT model training with immediate
reasoning steps is established based on an MLO problem.

▶ Our proposed epigraph subgradient algorithm is the first method
that finds an ϵ-approximate solution to the reformulated MLO
problem with K levels in O(logK(1/ϵ)/ϵ4) iterations.

▶ Experiments show EMO achieves the best efficiency and test
errors compared to the state-of-the-art.IC
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2. PROBLEM FORMULATION OF COT

We use the CoT setup in [13]. The ground truth target function is a
reasoning chain that maps from features {xi} to labels {yi}, denoted
as F , where F = FK ◦ · · · ◦ F2 ◦ F1. In a standard learning setup,
the prompt containing the n training data points plus the test query is
given by p = {(x1, y1), . . . , (xn, yn), (xq, ?)}, where yi = F(xi).
In the CoT setup, the training data also contains the labels of the
intermediate functions and the in-context prompt becomes

p = {(x1, s1), . . . , (xn, sn), (xq, ?)}, (1)

where the vector si = [s1i , . . . , s
K
i ] contains the labels at every level

of the ground truth CoT target F for input xi. Let s0i = xi. Then,

ski = Fi(s
k−1
i ) for k = 1, . . . ,K. (2)

Here, that ski represents the kth intermediate step in the CoT, yi = sKi ,
and the function Fk at the kth step is in some function class Fk.

We approximate F by a Transformer TFθ having parameters θ.
The Transformer predicts on input xi to get ŝ1i , then on input (xi, ŝ

1
i )

to get ŝ2i and so on until it gets ŝKi . That is, ŝi(θ) = [ŝ1i , . . . , ŝ
K
i ]

with ŝ1i (θ) = TFθ(xi) and

ŝki (θ) = TFθ(xi, ŝ
1
i , . . . , ŝ

k−1
i ) for k = 2, . . . ,K. (3)

To recover θ, we minimize a loss. Unlike in [13], we define a loss that
exploits the multilevel structure of the CoT process. Intuitively, we
want to match every intermediate step of the ground truth, that is to
minimize max{∥ŝ1i − s1i ∥, . . . , ∥ŝKi − sKi ∥} summed over training
data. To do so we formulate a MLO problem. Let fk define the level
k objective,

fk(θ) = E{xi}ni=1,{Fj}kj=1

[
1

n

n∑
i=1

1

k

k∑
j=1

ℓ(ŝji (θ), s
j
i )

]
, (4)

where ℓ(·, ·) is a pairwise loss function such as the absolute or
cross-entropy error. The objective fk(θ) captures the average error
being made in the first k intermediate steps. Let θ1 minimize f1(θ),
attaining minimum objective E1 ≜ minθ f1(θ). The model θ1 has
maximum accuracy for the first intermediate step in the reasoning
chain. For k > 1 we define θ⋆k and Ek recursively,

Ek = min
θ

fk(θ) s.t. fj(θ) ≤ Ej for j = 1, . . . , k − 1 (5)

and θ⋆k are the parameters that attain the minimum in the constrained
optimization above. As seen in (5), the model learns the intermediate
steps level by level. Indeed, the model with parameters θ⋆k
approximates intermediate steps 1, . . . , k. The full learned model is
θ⋆ = θ⋆K . Note that learning the level-k model θ⋆k while requiring
that all earlier levels are optimal is a stringent constraint, especially if
the model TFθ lacks sufficient expressiveness. By adding some slack
to this constraint, in the next section we reformulate a relaxed version
of the problem allowing us to develop an efficient method to find an
approximate solution using only gradients.

3. NESTED MULTILEVEL OPTIMIZATION

Directly solving (5) is nontrivial even for the bilevel case. Instead,
we can relax this inequality to fj(θ) − Ej ≤ ε, where ε > 0 is the
relaxation variable, such that there exists an interior point satisfying
this constraint, i.e., the Slater condition always holds [22].

By recursively applying this property backward from the Kth to
the 1st level, the original MLO problem (5) can be reformulated as

min
θ

fK(θ) (6a)

s.t. gK−1(θ) ≤ 0, ... s.t. gk(θ) ≤ 0, . . . s.t. g1(θ) ≤ 0 (6b)

where inequality constraint functions
gk(θ) ≜ fk(θ)− Ek − ε ≤ 0, ∀k. (7)

Note that unless the optimal solution sets of these multilevel
problems overlap, classic single-level constrained problems are
fundamentally different from multilevel ones. We impose an order in
the optimization process, where the kth-level optimization depends
on the (k − 1)th-level.
Major Challenge. One of the most straightforward approaches might
be the penalty method, which simply penalizes the constraints in the
objective, transforming the problem into a single-level optimization
problem. This method works well for constrained optimization or
even bilevel optimization, but it may face challenges in selecting an
appropriate step size if it is adopted for solving MLO. The reason
is that when there are multiple levels of constraints, for example,
three levels, the penalized objective can involve higher-order terms
of the penalty parameters. In this case, the objective might take
the form f3(θ) + ρg2(θ) + ρ2g1(θ), which affects the gradient
Lipschitz constant of the loss function. This, in turn, results in
the step-size requirement for ensuring convergence of gradient
descent-type algorithms being on the order of O(1/ρk). It is evident
that when ρ > 1, the required step size will be very small, which
hinders the learning process.
New Algorithm. We propose an epigraph reformulation [22] of this
problem by introducing a slack variable as follows.
min
θ,z

z (8a)

s.t. fK(θ) ≤ z, gK−1(θ) ≤ 0, s.t. . . . , s.t. g1(θ) ≤ 0. (8b)

Rather than minimize the original loss function, we minimize an upper
bound. Using the epigraph form, we rewrite minθ,z z, s.t. g(θ, z) ≤
0 as minz z, s.t. minθ g(θ, z) ≤ 0 [23, Theorem 3], which
corresponds to the original form of the problem as

min
z≥0

z (9a)

s.t. min
θ

g̃K−1(θ) ≜ max{gK−1(θ), fK(θ)− z} ≤ 0, (9b)

s.t. gK−2(θ) ≤ 0, . . . s.t. g1(θ) ≤ 0. (9c)

Recursively applying this rule forward from level 1 up to K gives
min
z1≥0

z1 (10a)

s.t. min
z2≥0

z2, s.t. . . . , (10b)

s.t. min
θ

g̃(θ) ≜ max
k

{
g1(θ), . . . ,

gk(θ)−
K−1∑
i=k

zi, . . . , fK(θ)−
K−1∑
i=1

zi

}
≤ 0. (10c)

Update of θ. The last level optimization problem finds a θ
such that the maximum function value among g1(θ), . . . , gk(θ) −∑K−1

i=k zi, and fK(θ) −
∑K−1

i=1 zi is minimized. Let k⋆(θ) =

argmaxk{g1(θ), . . . , gk(θ)−
∑K−1

i=k zi, . . . , fK(θ)−
∑K−1

i=1 zi}
be the index of the loss function that has the maximum value. One
of the most computationally efficient algorithms for optimizing the
maximum of a set of functions is the (stochastic) subgradient descent
method. Let ∂f(·) denote the subdifferential of f(·). Since Ek is
not a function of θ, we can update the variables by applying the
k⋆(θ(r))th-level loss function as follows:

θ(r+1) = θ(r) − αζ(r)g = θ(r) − αζ
(r)
f (11)

where r indexes the iterations, α is the learning rate, ζ
(r)
g ∈

∂θ g̃(θ
(r)), ζ(r)f ∈ ∂θ f̃(θ

(r)), and f̃(·) ≜ maxk{f1(·), . . . , fK(·)}.
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Update of {zk,∀k}. Once the above optimization process is complete
(i.e., either when the maximum value of all loss functions is less
than 0 for (z1, . . . , zK−1), or the maximum number of iterations is
reached), we can further adjust the values of {zk, ∀k} such that θ can
be optimized for all levels of the loss functions. One issue here is
that Ek is generally unknown; however, a bisection algorithm can be
applied to find zk for all k and ensure convergence. Specifically, we
initialize z

(0)
1 , . . . , z

(0)
K−1 with large positive values. After updating

θ (for several epochs), we check if condition (10c) is satisfied (or if
the maximum number of iterations is reached) and bisect the interval
[0, z

(0)
K−1]. We alternate between updating θ and bisecting zK−1

until the stopping criterion is met. Then, we move to the next level
and repeat the process. The complete algorithm is summarized in
Algorithm 1.

Algorithm 1: Pseudo-Code of EMO Algorithm

Data: prompts (xi, s
1
i , . . . , s

K−1
i , yi)

n
i=1

Result: learned model parameters θ(T )

Initialize θ(0), {z(0)k , ∀k}
for Choose z1 by the bisection algorithm do

for ... do
for Choose zK−1 by the bisection algorithm do

while condition (10c) is not satisfied or max
iterations reached do

Select k⋆(θ(r)) based on g̃(θ(r))

Update θ(r+1) by (11)
end

end
end

end

Iteration Complexity Analysis of EMO. The complexity of EMO is
of the same order as that of the standard subgradient optimization
algorithm, up to a logarithmic factor, making it well-suited for
solving large-scale problems. Specifically, we present the following
theoretical results.
Theorem 1. Assume that the loss functions are smooth and convex.
Suppose that the sequence {θ(r)}Tr=0 is generated by the EMO
algorithm and the learning rate is α ∼ O(1/

√
T ). Then, EMO

achieves a nearly ϵ-stationary point of problem (10) if the total
number of iterations T satisfies T ≥ O(logK(1/δ)/ϵ4), where δ is
the tolerance error required in the stopping criterion of the bisection
oracle.
Proof (Sketch) Bisection achieves error δ in O(log(1/δ)) iterations in
each level, hence K−1 levels requires O(logK(1/δ)) iterations. For
smooth loss functions with learning rate α ∼ O(1/

√
T ), subgradient

algorithms achieve ϵ-stationary points in O(1/ϵ4) iterations [24].
Multiplying these two complexities gives Theorem 1.
Reduction of Computational Complexity. One simple way to reduce
the complexity is to set all zk to a single variable z, so that problem
(10) reduces to the following bilevel problem.

min
z≥0

z (12a)

s.t. min
θ

max
k

{
g1(θ), . . . , gk(θ)− (K − k)z,

. . . , fK(θ)−(K − 1)z
}
≤ 0, (12b)

which directly decreases the complexity from O(logK(1/ϵ)/ϵ4) to
O(log(1/ϵ)/ϵ4) with δ = ϵ. Note that the term (K − k)z still
maintains the nested structure of this problem, emphasizing the

priority of enforcing the constraint at the (k− 1)th level compared to
the kth level.
Variants of EMO. The proposed EMO can also be adapted in other
ways. For example, using a Moreau envelope-based reformulation of
the loss functions at each level results in a variant of EMO as follows.
EMO-M. Some recent works on bilevel optimization introduce a
Moreau envelope-based reformulation [25, 26] for the lower-level
loss function, which provides an alternative approach to estimating
the minimum value Ek while preserving the nested structure
of the original problem. Specifically, we can revise the kth
level problem as fk(θ) − Eγ

k (θ) ≤ ε, where Eγ
k (θ) ≜

minϕ fk(ϕ) + (2γ)−1∥ϕ− θ∥2. When γ is small, this loss function
becomes strongly convex with respect to ϕ, allowing us to easily
obtain vγk (θ) by applying several steps of gradient descent on ϕ. The
advantage is that it eliminates the need for a bisection search for z,
while the downside is the additional computational burden of the
inner loop oracle required to obtain Eγ

k (θ), which is only estimated
approximately.
EMO-G. Instead of evaluating function values in condition
(10c), we can use the size of the gradient as a metric to
determine which block should be updated, i.e., k⋆(θ) =
argmaxk{∥∇θf1(θ)∥, . . . , ∥∇θfK(θ)∥} [24]. This approach
eliminates the need to search for z, but it loses the nested structure of
the original problem, reducing it to a switching gradient method for
solving nonlinear constrained optimization problems. We term this
algorithm EMO-G, to serve as a baseline.

4. EXPERIMENTS

We empirically evaluate the performance of applying EMO and
its variants for CoT inference problems compared to the vanilla
single-level training strategy (also known as CoT-I [13]), CoT-I/O
with the sum of all step-wise loss functions [13], and the
penalty-based method. During inference, given the prompt xq (from
either the in-distribution or OOD dataset) as input, the learned model,
optimized with parameter θ⋆, recursively outputs all intermediate
steps as follows: TFθ⋆(xq, ŝ

1, . . . , ŝk−1) = ŝk for all k.
Datasets. We generate chains using 3-layer MLPs with input
xi ∈ Rd where d = 10, hidden features s1i , s

2
i ∈ Rq with

q = 4, and output yi ∈ R. Here, s1i = F1(xi) ≜ ReLU(W1xi),
s2i = F2(s

1
i ) ≜ ReLU(W2s

1
i ), and yi = F3(s

2
i ) ≜ w⊤

3 s2i for
some weight matrices W1 ∈ Rq×d, W2 ∈ Rq×q , and w3 ∈ Rq .
The reasoning chain is the composition of the three functions, i.e.,
yi = F(xi) = w⊤

3 ReLU(W2ReLU(W1xi)). The distribution
of the feature vectors and task parameters is zero-mean Gaussian:
xi

i.i.d.∼ N (0, Id); each entry of Wi is randomly sampled from
N (0, 2/q) and w3 ∼ N (0, Iq) for each prompt.

In addition to the in-distribution test dataset, we create OOD data
samples to evaluate the robustness of the optimization algorithms
against distribution shifts. For the training and in-distribution test
datasets, the covariance matrix is fixed to the identity matrix. For
the OOD dataset, we draw the in-context input vectors from xq ∼
N (0, cΛ), where Λ is diagonal with λi

i.i.d.∼ Exponential(1) and
c = 4, following [7].
Training. All the experiments use the GPT-2 model [27] with three
transformer blocks. We adopt Adam [28] to optimize the model over
50k epochs with batch size 64. For each prompt, n feature vectors are
randomly sampled and then labeled by a set of randomly generated
task parameters. During training, n increases from 1 to 100 to cover
varying prompt lengths. We report the square loss as our metric for
step-wise error, i.e., ℓ(ŝki , s

k
i ) = ∥ŝki − ski ∥22.
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Fig. 2: Performance comparison of EMO, EMO-M, EMO-G, vanilla training, CoT-I/O, penalty method in terms of in-distribution test errors.

(a) Step 1

O
O

D
 E

rro
r

2

4

6

# in-context samples (n)
0 50 100

(b) Step 2

2

3

4

5

# in-context samples (n)
0 50 100

(c) Step 3

0

20

40

60

# in-context samples (n)
0 50 100

Fig. 3: Performance comparison of EMO, EMO-M, EMO-G, vanilla training, CoT-I/O, penalty method in terms of OOD test errors.

Numerical Results. The performance for training, testing, and OOD
scenarios is demonstrated in Figure 1, Figure 2, Figure 3, respectively.
As shown in Figure 1, EMO achieves the lowest training error at
all levels and maintains a competitive convergence rate compared to
other baseline methods. EMO-M, while showing relatively worse
performance in terms of achievable training errors compared to the
other methods, still outperforms the penalty method, particularly for
the first reasoning step.

Due to the page limit, we omit the test error vs. epochs and
instead include the test error vs. prompt length n, which better
reflects the generalization performance of the nested machine models,
consistent with the experiment in [13]. It is observed that as the
prompt length increases, CoT performs better, particularly EMO,
achieving the lowest test error. This improvement is attributed to
the nested training structure, which emphasizes minimizing the loss
function level by level, or equivalently, step by step. After a certain
n, the test errors for all methods stabilize as n increases, which is
consistent with existing theoretical generalization analyses [13, 29].

Interestingly, the OOD errors obtained by all methods, except
the vanilla one, exhibit a slight U-curve pattern, indicating that

inference error accumulates beyond a certain prompt length due
to the mismatch between the training and test prompts. It can also
be observed that in this scenario, both EMO and EMO-M show
significant improvement over the other baselines, underscoring the
importance of step-wise model parameter optimization over the
vanilla summation formulation.

5. CONCLUDING REMARKS
We proposed a unified nested MLO framework for CoT inference. To
the best of our knowledge, this is the first mathematical formulation
established for designing CoT-structured machine learning models,
where each level of the optimization process enhances the quality of
the subsequent step prediction, enabling step-by-step inference. We
further introduce an epigraph-based MLO reformulation for this class
of problems to design a first-order method that can find stationary
points of this problem with provable convergence guarantees. Our
numerical results on the GPT-2 language model demonstrate that
the proposed nested training strategy maintains high CoT inference
quality at each step and outperforms all baseline models in terms of
overall training speed and generalization performance.
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