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Abstract

This paper deals with distributed reinforcement learning prob-
lems with safety constraints. In particular, we consider that a
team of agents cooperate in a shared environment, where each
agent has its individual reward function and safety constraints
that involve all agents’ joint actions. As such, the agents aim
to maximize the team-average long-term return, subject to all
the safety constraints. More intriguingly, no central controller
is assumed to coordinate the agents, and both the rewards and
constraints are only known to each agent locally/privately. In-
stead, the agents are connected by a peer-to-peer communi-
cation network to share information with their neighbors. In
this work, we first formulate this problem as a distributed con-
strained Markov decision process (D-CMDP) with networked
agents. Then, we propose a decentralized policy gradient (PG)
method, Safe Dec-PG, to perform policy optimization based
on this D-CMDP model over a network. Convergence guar-
antees, together with numerical results, showcase the supe-
riority of the proposed algorithm. To the best of our knowl-
edge, this is the first decentralized PG algorithm that accounts
for the coupled safety constraints with a quantifiable conver-
gence rate in multi-agent reinforcement learning. Finally, we
emphasize that our algorithm is also novel in solving a class
of decentralized stochastic nonconvex-concave minimax opti-
mization problems, where both the algorithm design and cor-
responding theoretical analysis are of independent interest.

Introduction

Reinforcement learning (RL) has achieved tremendous
success in many sequential decision-making problems in
(Mnih et al. 2015; Sutton and Barto 2018), such as opera-
tions research, optimal control, bounded rationality, machine
learning, etc., where an agent explores the interactions with
an environment so that it is able to maximize a cumulative
reward through this learning process. Beyond applying the
classical RL techniques in control systems, physical con-
straints or safety considerations will also be the key com-
ponents of determining the performance of an RL system.
Especially, this is more important in multi-agent RL (MAR-
L) that models the sequential decision-making of multiple
agents in a shared environment, while each agent’s objective
and the system evolution are both affected by the decisions
made by all agents (Nguyen et al. 2014).

Background of Multi-Agent RL
The studies of MARL can be traced back to
Q-learning in (Claus and Boutilier 1998) and
(Wolpert, Wheeler, and Tumer 1999), with applications
to network routing (Boyan and Littman 1994) and power
network control (Schneider et al. 1999). However, all the
algorithms involved in these works are heuristic without
performance guarantees. Recent empirical results of deep
multi-agent collaborative RL algorithms can also be found
in (Gupta, Egorov, and Kochenderfer 2017; Lowe et al.
2017; Omidshafiei et al. 2017). One of the earliest distribut-
ed RL algorithm with convergence guarantees was reported
in (Lauer and Riedmiller 2000), which is tailored to the
tabular multi-agent Markov decision process (MDP) setting,
and another one (Nguyen et al. 2014). Then, a distributed
Q-learning algorithm was developed with being provably
able to learn the desired value function and the optimal
stationary control policy at each network agent through a
consensus network, where each agent can only communi-
cate with their neighbors (Kar, Moura, and Poor 2013). In
the same setup, fully decentralized actor-critic algorithms
with function approximation were developed in (Zhang et al.
2018) to handle large or even continuous state-action spaces.
However, the convergence in (Zhang et al. 2018) was again
established in an asymptotic sense. For a fixed policy, decen-
tralized policy evaluation (value function approximations)
approaches for MARL have been studied in (Wai et al.
2018; Doan, Maguluri, and Romberg 2019; Qu et al. 2019).
(Please see also the recent surveys (Zhang, Yang, and Başar
2019; Lee et al. 2020) and references therein.)

Related Work
Decentralized and distributed algorithms with quantifi-
able convergence rate guarantees in the optimization
community have been developed for many decades
(Nedic, Ozdaglar, and Parrilo 2010) in various scenarios, in-
cluding (strongly) convex and non-convex cases. Recent
advances in distributed non-convex optimization show that
decentralized stochastic gradient descent or tracking (DS-
GD/DSGT) is able to train neural networks much faster than
the centralized algorithms in terms of running time numer-
ically (Lian et al. 2017; Lu et al. 2019). Also, it has been
indicated in theory that there is a linear speed-up of per-
forming decentralized optimization compared with the cen-



Algorithm Rate Decentralized Implementation

PGSMD (Rafique et al. 2018) O
(
ϵ−6

)
7 double-loop

GDA (Lin, Jin, and Jordan 2020) O
(
ϵ−8

)
7 single-loop

Safe Dec-PG (this work) O
(
ϵ−4

)
3 single-loop

Table 1: A comparison of stochastic non-convex concave minmax algorithms with convergence to the first-order game-stationary
points (FOSPs).

tralized one in terms of the number of nodes (Lian et al.
2017; Tang et al. 2018; Lu and Wu 2020). Moreover, in prac-
tice, the data would be collected through the sensors over
a network, so the distributed learning becomes one of the
most powerful signal, data, and information processing tools.
(Please see a survey (Chang et al. 2020) of recent distributed
non-convex optimization algorithms and their applications.)
However, the safe RL problem is not only maximizing re-
wards but also takes practical issues into account or intro-
duces some prior knowledge of the model in advance, where
there would be multiple cumulative long-term reward func-
tions incorporated as the constraints (Paternain et al. 2019a;
Wachi and Sui 2020). Unfortunately, none of the existing
works deal with the safety constraints that are also non-
convex, no need to mention their distributed implementation
over a network.

By the primal-dual optimization framework, the safe RL
problem can be formulated as a min-max saddle point form
by the method of Lagrange multipliers or dualizing the con-
straints (Boyd and Vandenberghe 2004). However, different
from the classical supervised learning, e.g., support vector
machine and least squares regression, the policy in RL is
mostly parametrized by a (deep) neural network so that the
cumulative reward functions are non-convex. Hence, the d-
uality gap in this case is not zero in general, which makes
the optimization process much more difficult than the tradi-
tional convex-concave min-max problem even in the central-
ized setting. Interestingly, some recent exciting results illus-
trate that the duality gap in safe RL problems could be zero
(Paternain et al. 2019b) by assuming some oracle that can
find the global optimal solution of the Lagrangian with re-
spect to policy. It is inspiring that safe RL might be solved
efficiently to high-quality solutions by the non-convex min-
max solvers.

During the last few years, solving non-convex min-max
saddle-point problems has gained huge popularity and indi-
cated significant power of optimizing the interest of param-
eters in many machine learning and/or artificial intelligence
problems, including adversarial learning, robust neural nets
or generative adversarial nets (GANs) training, fair resource
allocation (Razaviyayn et al. 2020). The main idea of design-
ing these algorithms is to perform gradient descent and as-
cent with respect to the objective functions, such as gradient
descent ascent (GDA) algorithm (Lin, Jin, and Jordan 2020),
multi-GDA (Nouiehed et al. 2019), proximally guided s-
tochastic mirror descent method (PGSMD) (Rafique et al.
2018), and hybrid block successive approximation (HiBSA)
(Lu et al. 2020). The difference between GDA and multi-
GDA is that the latter performs multiple steps of gradient

ascent updates instead of one. Among these algorithms, Hi-
BSA achieves the fastest convergence rate with only a single
loop update rule to optimization variables for the determin-
istic non-convex case. However, there is no theoretical guar-
antee that HiBSA is amenable to handle the stochasticity of
the samples in the non-convex (strongly) concave min-max
problems. Further, all these algorithms are centralized, so
it is not clear whether they can be used for a multi-agent
system. Recently, there are some interesting works regard-
ing the distributed training for a class of GANs (Liu et al.
2020a,b), where the problem is formulated as a decentral-
ized non-convex saddle-point problem. But both of them re-
quire that the objective function satisfy the Minty variational
inequality (MVI), otherwise, these methods cannot converge
to an ϵ-first-order stationary point (FOSP) of the considered
problem even the number of iterations is infinite. While in
RL/MARL there is no evidence which can indicate that dis-
counted cumulative reward function satisfies MVI again due
to the nonconvexity of the loss function when the policy at
each node is parametrized by a neural net.

Main Contributions
In this work, by leveraging the min-max saddle-point formu-
lation, we propose the first safe decentralized policy gradient
(PG) descent and ascent algorithm, i.e., Safe Dec-PG, which
is able to deal with a class of multi-agent safe RL problems
over a graph. Importantly, we provide theoretical results that
quantify the convergence rate of Safe Dec-PG to an ϵ-first-
order stationary points (FOSP) of the considered non-convex
min-max problem in the order of 1/ϵ4 (or equivalently the
optimality gap is shrinking in the order of 1/

√
N , where N

denotes the total number of iterations). When the graph is
fully connected in the sense that there is no consensus er-
ror (each agent can know all the other agents’ policy at each
iteration), Safe Dec-PG will reduce to a centralized algorith-
m. Even in this case, the obtained convergence rate is still
the state-of-the-art result to the best of our knowledge. A
more detailed comparison between proposed Safe Dec-PG
and other existing stochastic non-convex concave min-max
algorithm in the centralized setting is shown in Table ??. The
main advantages of Safe Dec-PG are highlighted as follows:
I (Simplicity) The structure of implementing the algorithm

is single-loop, where the parameters that need to be tuned
are only the stepsizes in the minimization and maximiza-
tion subproblems.

I (Theoretical Guarantees) It is theoretically provable that
Safe Dec-PG is able to find an ϵ-FOSP of the formulat-
ed non-convex min-max problem within O(1/ϵ4) num-
ber of iterations, matching the standard convergence rate



of centralized stochastic gradient descent (SGD) and de-
centralized SGD to ϵ-FOSPs in non-convex scenarios.

I (Applicability) Safe Dec-PG is also a general optimiza-
tion problem solver, which can be applied for dealing
with many non-convex min-max problems rather than the
RL/MARL problems, and it could be implemented in ei-
ther a decentralized way over a network or on a single
machine.

Multiple numerical results showcase the superiority of the
algorithms applied in the problems of safe decentralized R-
L compared with the classic decentralized methods without
safety considerations. Due to the page limitation, proofs of
all the lemmas, the main theorem and additional numerical
results are included in the supplemental materials.

Safe MARL with Decentralized Agents
In this section, we introduce the background and formulation
of the safe MARL problem with decentralized agents.

Multi-Agent Constrained Markov Decision Process
(M-CMDP)
Consider a team of n agents operating in a common envi-
ronment, denoted by N = [n]. No central controller exists
to either make the decisions or collect any information for
the agents. Agents are instead allowed to communicate with
each other over a communication network G = (N , E), with
E being the set of communication links that connect the a-
gents. Such a decentralized model with networked agents
finds broad applications in distributed cooperative control
problems (Fax and Murray 2004; Corke, Peterson, and Rus
2005; Dall’Anese, Zhu, and Giannakis 2013), and has
been advocated as one of the most popular paradigm-
s in decentralized MARL (Zhang et al. 2018; Wai et al.
2018; Doan, Maguluri, and Romberg 2019; Qu et al. 2019;
Zhang, Yang, and Başar 2019; Lee et al. 2020). More impor-
tantly, each agent has some safety constraints, in the forms
of bounds on some long term cost, that involve the joint poli-
cy of all agents. We formally introduce the following model
of networked multi-agent constrained MDP (M-CMDP) to
characterize this setting.
Definition 1 (Networked Multi-agent CMDP (M-CMDP)).
A networked multi-agent CMDP is described by a tuple
(S, {Ai}i∈N , P, {Ri}i∈N ,G, {Ci}i∈N , γ) where S is the
state space shared by all the agents, Ai is the action s-
pace of agent i, and G is a communication network (a
well-connected graph). Let A =

∏n
i=1 Ai be the joint ac-

tion space of all agents; then, Ri : S × A → R and
Ci : S ×A → R are the local rewards and cost functions of
agent i, and P : S × A × S → [0, 1] is the state transition
probability of the MDP. γ ∈ (0, 1) denotes the discount fac-
tor. The states sss and actions aaa are globally observable, while
the rewards and costs are observed locally/privately at each
agent.

The networked M-CMDP proceeds as follows. At time
t, each agent i chooses its own action aaati given ssst, accord-
ing to its local policy πi : S → ∆(Ai), which is usually
parametrized as πwi by some parameter wi ∈ Θi with di-
mension di. The networked agents try to learn a joint policy

πwi : S → ∆(A) given by πθθθ(sss,aaa) =
∏

i∈N πwi(sss,aaai)

with θθθ = [w⊤
1 . . .w⊤

n ]
⊤ ∈ Rd, where d =

∑n
i=1 di denotes

the whole problem dimension. As a team, the objective of al-
l agents is to collaboratively maximize the globally average
return over the network (equivalently to minimize the oppo-
site of it), dictated by R(sss,aaa) = n−1 ·

∑
i∈N Ri(sss,aaa), with

only its local observations of the rewards, subject to some
safety constraints dictated by Ci(sss,aaa). At each node, there
would be multiple safety constraints. These rewards describe
different objectives that the agent is required to achieve, such
as remaining with a region of the state space, or not running
out of memory/battery. Here, we assume that each agent is
associated with m cost functions, so Ci(sss,aaa) is a mapping
from S × A to Rm. Specifically, the team aims to find the
joint policy πθθθ that

min
θθθ∈Θ

JR
0 (θθθ),E

(
− 1

n

∑
t≥0

γt
∑
i∈N

Ri(sss
t, aaat)

∣∣∣∣sss0, πθθθ) (1a)

s.t. JC
i (θθθ),E

(∑
t≥0

γtCi(sss
t, aaat)

∣∣∣∣sss0, πθθθ)≥ ci,∀i ∈ N

(1b)

where Θ =
∏N

i=1 Θi is the joint policy parameter space,
JR
0 (θθθ) corresponds to the negative team-average discount-

ed long-term return, JC
i (θθθ) : Rd → Rm denotes the long-

term costs of agent i, ci ∈ Rm, ∀i are the lower-bounds of
JC
i (θθθ),∀i that impose the safety constraints, and E is taken

over all randomness including the policy and the underly-
ing Markov chain. Each agent i only has access to its own
reward and cost Ri and Ci, and the desired bound ci. Note
that our ensuing results can be straightforwardly generalized
to the setting where each agent has different number of cost-
s, at the expense of unnecessarily complicated notations. In
general, the long-term return JR

0 (θθθ) is non-convex with re-
spect to the policy parameter θθθ (Zhang et al. 2020; Liu et al.
2019; Agarwal et al. 2020), so do the constraint functions
JC
i (θθθ),∀i, which makes the problem challenging to solve

using the first-order PG methods.
Primal-Dual for Safe M-CMDP
Viewing the team as a single agent, the problem above
falls into the regime of the standard constrained MD-
P (Altman 1999), which has been widely studied in
single-agent safe RL. Nonetheless, in a decentralized
paradigm, standard RL algorithms for solving CMD-
P are not applicable, as they require the instantaneous
access to the team-average reward and all cost func-
tions {Ci}i∈N (Borkar 2005; Prashanth and Ghavamzadeh
2016; Achiam et al. 2017; Yu et al. 2019; Paternain et al.
2019b). Instead, we re-formulate the problem as a de-
centralized non-convex optimization problem with non-
convex constraints, in order to develop decentralized poli-
cy optimization algorithms. In particular, letting JR

i (θθθ) ,
E(−

∑
t≥0 γ

tRi(sss
t, aaat) |sss0, πθθθ), we have the networked M-

CMDP as

min
{θθθi∈Θ}

1

n

∑
i∈N

JR
i (θθθi) (2)

s.t. θθθi = θθθj j ∈ Ni, ci − JC
i (θθθi) ≤ 0, ∀i ∈ N ,



where Ni ⊆ N denotes the set of the neighboring a-
gents of agent i over the network, and θθθi is the local
copy of the policy parameter θθθ (i.e., the concatenation
of all the agents’ parameters). By the Lagrangian method
(Boyd and Vandenberghe 2004), the problem (2) can be writ-
ten as

min
{θθθi∈Θ}

max
λλλ≥0

L(θθθ1, . . . , θθθn,λλλ1, . . . ,λλλn) (3a)

s.t. θθθi = θθθj j ∈ Ni, ∀i, (3b)

where

L(θθθ1, . . . , θθθn,λλλ1, . . . ,λλλn) ,
1

n

∑
i∈N

JR
i (θθθi)+⟨gi(θθθi),λλλi⟩,

(4)
gi(θθθi) , ci − JC

i (θθθi), and λλλ1, . . . ,λλλn denote the dual vari-
ables.

Main Challenges of Solving Safe Decentralized RL

To this end, the multi-agent safe RL problem has been for-
mulated as (3). Unfortunately, there is no existing work that
is able to solve this problem to its FOSPs with any theoret-
ical guarantees. The main difficulties here are four-fold as
follows:
I There are two types of constraints in this problem: one is

the consensus equality constraint and the other one is the
long term cumulative reward related inequality constrain-
t.

I The constraints and loss functions are both in an ex-
pected discounted cumulative reward form and possibly
non-convex, while most of the classical non-convex algo-
rithms, e.g., neural nets training, are designed for the case
where only the loss functions are non-convex.

I The problem is stochastic in nature and the PG estimate
is biased instead of unbiased due to the finite-horizon ap-
proximation, so we need extra efforts to quantify how bi-
ased estimates affect the convergence results.

I From a min-max saddle-point perspective, the minimiza-
tion problem is non-convex and the maximization prob-
lem is concave (linear), while there would be also a con-
sensus error coupled with both minimization and maxi-
mization optimization variables. Disentangling this error
from the minimization and maximization processes will
result in a significant different theorem proving technique
compared with the existing theoretical works.

Therefore, solving this family of stochastic non-convex prob-
lems over a graph is much more challenging than the clas-
sical ones, e.g., centralized min-max saddle-point problem-
s, decentralized consensus problems, stochastic non-convex
problems, and so on. Next, we will propose the new gradi-
ent tracking based single loop primal dual algorithm to deal
with this M-CMDP problem.

Safe M-CMDP Algorithm
First, we introduce the safe policy gradient used in Safe Dec-
PG as the following.

Safe Policy Gradient
The search for an optimal policy can thus be performed
by applying the gradient descent-type iterative methods to
the parametrized optimization problem (3). The gradient of
each agent’s cumulative loss JR

i (θθθi) in (3) can be written as
(Baxter and Bartlett 2001)

∇θθθi
JR
i (θθθi)=E

[ ∞∑
t=0

(
t∑

τ=0

∇ log πθθθi
(aaaτ |sssτ ;θθθi)

)
γtRi(sss

t, aaat)

]
where {aaat, ssst} are obtained from each trajectory under the
joint policy (parametrized by {θθθi, ∀i}). When the MDP mod-
el is unknown, the stochastic estimate of PG is often used,
that is

∇̂θθθi
JR
i (θθθi) =

∞∑
t=0

(
t∑

τ=0

∇ log πθθθi
(aaaτ |sssτ ;θθθi)

)
γtRi(sss

t, aaat),

which was proposed in (Baxter and Bartlett 2001) and called
the gradient of a partially observable MDP (abbreviated as
G(PO)MDP PG). The G(PO)MDP gradient is an unbiased
estimator of the PG (Papini et al. 2018; Xu, Gao, and Gu
2020).

Likewise, the stochastic PG estimate of each agent’s
JC
i (θθθi) in (3) can be written as

∇̂θθθi
JC
i (θθθi) =

∞∑
t=0

(
t∑

τ=0

∇ log πθθθi
(aaaτ |sssτ ;θθθi)

)
γtCi(sss

t, aaat).

Let fi(θθθi,λλλi) , JR
i (θθθi)+⟨ci−JC

i (θθθi),λλλi⟩, ∀i for notational
simplicity. Then, the policy gradients with respect to primal
variables are

∇̂θθθi
fi(θθθi,λλλi) = ∇̂θθθi

JR
i (θθθi)− ⟨∇̂θθθi

JC
i (θθθi),λλλi⟩, ∀i (5)

and the policy gradients with respect to dual variables are

∇̂λλλi
fi(θθθi,λλλi) = ci − ĴC

i (θθθi), ∀i (6)

where ĴC
i (θθθi) ,

∑∞
t=0 γ

tCi(sss
t, aaat|sss0, πθθθi

). Note that the
stochastic gradients in (5) and (6) use only one trajectory
of the Markov chain, which may incur large variance. Akin
to mini-batch in SGD, a natural solution is to average over
K trajectories to obtain the policy gradient with respect to
the primal variables denoted as ∇̂K

θθθi
fi(θθθi,λλλi), ∀i, and with

respect to the dual variables denoted as ∇̂K
λλλi
fi(θθθi,λλλi), ∀i.

In simulations, sampling an infinite trajectory may not be
tractable, and a finite-horizon approximation of the PGs (5)
and (6) is usually used (Chen et al. 2018), which are de-
noted as ∇̂T,K

θθθi
fi(θθθi,λλλi) and ∇̂T,K

λλλi
fi(θθθi,λλλi). Also, we can

have a set of globally observable states and actions denoted
by {aaaτk, sssτk}, where k denotes the index of trajectories and
τ denotes the index of time. Consequently, the stochastic
estimate of PG with K trajectories (samples) and a finite-
horizon truncation of length T can be expressed as

∇̂T,K
θθθi

fi(θθθi,λλλi)=∇̂T,K
θθθi

JR
i (θθθi)− ⟨∇̂T,K

θθθi
JC
i (θθθi),λλλi⟩, (7a)

∇̂T,K
λλλi

fi(θθθi,λλλi)=ci − (ĴC
i )T,K(θθθi) , ĝi(θθθi) (7b)



where

∇̂T,K
θθθi

JR
i (θθθi) ,

1

K

K∑
k=1

T∑
t=0

(
t∑

τ=0

∇ log πθθθi
(aaaτk|sssτk;θθθi)

)
γtRi(sss

t
k, aaa

t
k), (8)

∇̂T,K
θθθi

JC
i (θθθi) ,

1

K

K∑
k=1

T∑
t=0

(
t∑

τ=0

∇ log πθθθi
(aaaτk|sssτk;θθθi)

)
γtCi(sss

t
k, aaa

t
k), (9)

and (ĴC
i )T,K(θθθi) , K−1

∑K
k=1

∑T
t=0 γ

tCi(sss
t
k, aaa

t
k). Note

that the finite length horizontal truncation will make the s-
tochastic estimate PG become biased.

Safe Dec-PG: Safe Decentralized Policy Gradient
After getting the PG estimates, Safe Dec-PG algorithm we
proposed is given below. For notational simplicity, in the fol-
lowing we assume the problem dimension is 1. We first up-
date the parameters of the parametrized policy at each node
by

θθθr+1
i =

∑
j∈Ni

Wijθθθ
r
j − βrϑϑϑr

i , (10)

where r denotes the index of the iterations, βr is the stepsize
of PG descent, ϑϑϑr

i is an auxiliary (tracking) variable (which
will be introduced with more details later in (11)), and Wij

is a weight matrix that characterizes the relations among the
nodes over graph G.

Next, we provide detailed descriptions about W and ϑϑϑ:
1) The weight matrix is double stochastic (i.e., the graph
is well-connected.), which is defined as follows: if there
exists a link between node i and node j, then Wij > 0,
otherwise Wij = 0, and W satisfies W1 = 1 and
1⊤W = 1⊤. There are many ways of designing the weight
matrix based on the connectivity of the graph. The stan-
dard ones include Metropolis-Hasting weight, maximum-
degree weight, Laplacian weight (Xiao and Boyd 2004;
Boyd, Diaconis, and Xiao 2004); 2) due to the partial ob-
servability of each agent, the variable ϑϑϑr

i here is pro-
posed for approximating the full PG of the network (i.e.,
n−1

∑n
i=1 ∇̂θθθi

fi(θθθi,λλλi)), and is updated locally as

ϑϑϑr+1
i =

∑
j∈Ni

Wijϑϑϑ
r
j

+ ∇̂T,K
θθθi

fi(θθθ
r+1
i ,λλλr

i )− ∇̂T,K
θθθi

fi(θθθ
r
i ,λλλ

r
i ), ∀i (11)

with ϑϑϑ0
i , 000, ∀i. This update rule is similar to the (stochas-

tic) gradient tracking technique proposed for both classi-
cal consensus based (deterministic or stochastic) distribut-
ed optimization problems (Di Lorenzo and Scutari 2016;
Sun, Daneshmand, and Scutari 2019). But here since we al-
so have dual variable updates, at each time the evaluated gra-
dient is also dependent on λλλr

i , so it is not clear whether the
tracked full PG by ϑϑϑr

i is still accurate enough so that the
resulting sequence can converge to the stationary points of
problem (3). In our performance analysis section, we will

Algorithm 1 Safe Dec-PG

Input: θθθ0i , ϑϑϑ0
i = λλλ0

i = 000,∀i
for r = 1, . . . do

for Each agent i do
Update θθθr+1

i by (10)
Perform rollout to get ∇̂T,K

θθθi
fi(θθθ

r
i ,λλλ

r
i )

Update ϑϑϑr+1
i by (11)

Calculate (ĴC
i )T,K(θθθr+1

i )

Update λλλr+1
i by (13)

end for
end for

show the conditions that can ensure the convergence of Safe
Dec-PG in solving problem (3).

In this work, instead of performing a vanilla dual update,
we propose to add a (quadratic) perturbation term (a.k.a. s-
moothing technique) to the maximization procedure as fol-
lows:

λλλr+1
i = argmax

λλλi≥0

⟨
∇̂T,K

λλλi
fi(θθθ

r+1
i ,λλλr

i ),λλλi − λλλr
i

⟩
− 1

2ρ
∥λλλi − λλλr

i ∥2 −
γr

2
∥λλλi∥2, ∀i (12)

where ρ > 0 is the stepsize of PG ascent in updating λλλr
i ,

γr (to be defined later) is a diminishing parameter. The per-
turbation term γr/2∥λλλi∥2 plays one of the most key roles
of ensuring the convergence of Safe Dec-PG. It adds some
(desired) curvature to this subproblem (12) in such a way it
is possible to quantify the maximum ascent of our construct-
ed potential function (a Lyapunov-like function that will be
used to measure the progress of the proposed algorithm) af-
ter the update of λλλr

i . Then, this parameter gradually reduces
the problem curvature to resemble the original subproblem
such that the obtained solution is the FOSP of problem (3)
rather a deviated one. Note that (12) can also be easily im-
plemented locally by

λλλr+1
i =PΛ

(
(1− ργr)λλλr

i + ρ∇̂T,K
λλλi

fi(θθθ
r+1
i ,λλλr

i )
)
, ∀i (13)

where PΛ denotes the projection operator, and Λ =
{λλλi|λλλi ≥ 0}, ∀i stands for the feasible set.

It can be seen that one of the major advantages of Safe
Dec-PG is regarding its simplicity of updating rules for all
the parameters: 1) a single loop algorithm; 2) each variable
can be only updated locally through exchanging the param-
eters over the communication channel. From the following
convergence analysis, we will show that when some mild
conditions hold, Safe Dec-PG is guaranteed to find the FOS-
Ps of problem (3) by controlling the stepsizes used in the
minimization and maximization procedures properly.

Performance Analysis of Safe Dec-PG
Before showing our theoretical results, we first give the stan-
dard assumptions as follows.

Assumptions
To begin with, we assume that fi, gi, ∀i satisfy a Lipschitz
continuous condition. To be more specific, we have



Assumption 1. Assume functions ∇fi(θθθi,λλλi),∀i have L-
Lipschitz continuity with respect to θθθi, ∀i and functions
gi(θθθi), ∀i have L′-Lipschitz continuity with respect to θθθi, ∀i.

Next, we assume the connectivity of the graph, which
specifies the topology of the communication channel so that
the consensus step can be performed in a decentralized way.

Assumption 2. Assume the network is well-connected (a.k.a.
strongly-connected), i.e., W is a double stochastic matrix.
Also

¯
λmax(W) , η < 1, where

¯
λmax(W) denotes the sec-

ond largest eigenvalue of the weight matrix W.

Assumption 3. We assume that the rewards in both ob-
jective and constraints are upper bounded by G, i.e.,
max{Ri(sss

t, aaat), Ci(sss
t, aaat),∀i} ≤ G, and the true PG is up-

per bounded by G′, i.e., ∥∇ log πθθθi
(aaaτ |sssτ ;θθθi)∥ ≤ G′, ∀i, τ .

The first part of Assumption 3 requires the bounded-
ness of the instantaneous reward, which makes sense in
practice since the physical systems commonly output fi-
nite magnitudes of responses. The second part requires the
partial derivatives of the log function of the policies, i.e.,
∥∇ log πθθθi

(aaaτ |sssτ ;θθθi)∥ to be bounded, which can be satis-
fied by e.g., parametrized Gaussian policies.

Assumption 4. Assume that the Slater condition is satisfied
and the size of Λ is upper bounded by σλ, i.e., Λ = {λλλi|λλλi ≥
0, ∥λλλi∥ ≤ σλ}, ∀i.

Convergence Rate
Since functions JR

i and JC
i , ∀i are possibly non-convex,

finding the global optimal solution for this min-max prob-
lem is NP-hard in general (Nouiehed, Lee, and Razaviyayn
2018). It is of interest to obtain the FOSPs of problem (1).
First, we define the optimality gap as

G({θθθi,λλλi, ∀i}) =

∥∥∥∥∥ 1n
n∑
i

∇fi(θθθi,λλλi)

∥∥∥∥∥
1

n

n∑
i=1

∥λλλi − PΛ[λλλi + gi(θθθi)]∥+
1

n

n∑
i=1

∥θθθi − θ̄θθ∥, (14)

where the first and second terms of the right hand side of
(14) are the standard optimality gap of non-convex min/max
problems while the third term is the consensus violation gap
that characterizes the difference among the weights over the
network, where θθθ , n−1

∑n
i=1 θθθi.

Definition 2. If a point ({θθθ∗i ,λλλ∗
i , ∀i}) satisfies

∥G({θθθ∗i ,λλλ∗
i , ∀i})∥ ≤ ϵ, then we call this point as an

ϵ-approximate first-order stationary points of (3), abbrevi-
ated as ϵ-FOSP.

Remark 1. Note that points ({θθθ∗i ,λλλ∗
i , ∀i}) satisfying con-

dition G({θθθ∗i ,λλλ∗
i , ∀i}) = 0 is also known as “quasi-Nash

equilibrium” points (Pang and Scutari 2011) or “first-order
Nash equilibrium” points (Nouiehed et al. 2019).

The convergence results of Safe Dec-PG are given below.

Theorem 1. Suppose Assumption 1 to Assumption 4 hold
and the iterates {θθθri ,ϑϑϑr

i ,λλλ
r
i ,∀i} are generated by Safe Dec-

PG. If the total number of iterations of the algorithm is N

and

T ∼ Ω(log(N)), γr ∼ O
(

1√
r

)
, βr ∼ O

(
1√
r

)
,

(15)
then we have

E[G2({θθθr
′

i ,λλλr′

i , ∀i})] ≤ O
(
log(N)√

N

)
+O(σ2

g(T,K))

(16)
where constant σ2

g(T,K) denotes the variance of PG esti-
mate with respect to function g(·), and r′ is picked randomly
from 1, . . . , N .

Theorem 1 says that Safe Dec-PG is able to find the solu-
tion of (1) at a rate of at least O(log(N)/N1/2) to a neigh-
borhood of the ϵ-FOSP of this problem, where the radius
of this ball is determined by the number of trajectories and
length of the horizon approximation. The number of trajec-
tories is or the longer the length is, the smaller the radius
will be.

Corollary 1. Suppose Assumption 1 to Assumption 4 hold
and the iterates {θθθri ,ϑϑϑr

i ,λλλ
r
i ,∀i} are generated by Safe Dec-

PG. When T, γr, βr satisfy (15) and K ∼ O(
√
N), then we

have

E[G2({θθθr
′

i ,λλλr′

i , ∀i})] ≤ O
(
log(N)√

N

)
(17)

where the total number of iterations of the algorithm is N ,
and r′ is picked randomly from 1, . . . , N .

Note that the proposed Safe Dec-PG is not only applicable
to constrained MDP problems, but also amenable to solve a
wide class of stochastic non-convex concave min-max opti-
mization problems.

Remark 2. To the best of our knowledge, our results are
new in both RL and optimization communities.
I When T is infinitely large, i.e., ϵf (T ) = ϵg(T ) = 0,

Safe Dec-PG is reduced to a decentralized stochastic non-
convex min-max optimization algorithm. In this regime,
Safe Dec-PG also provides the state-of-the-art conver-
gence rate to a neighborhood of FOSPs.

I When K and T are both infinitely large, i.e., ϵf (T ) =
ϵg(T ) = σ2

f (T,K) = σ2
g(T,K) = 0, Safe Dec is re-

duced to a deterministic decentralized non-convex min-
max algorithm. The convergence rate of Safe Dec-PG
is still O(log(N)/N1/2) but with guarantees to the ϵ-
FOSPs, matching the convergence rate of HiBSA in the
centralized case.

Remark 3. The number of nodes, n, is not shown up in the
numerator of the convergence rate result, indicating that the
achievable rate in (17) will not be slowed down by increas-
ing the number of agents and the radius of the neighborhood
in (16) will not be magnified as well.

Numerical Results
Problem setting To show the performance of safe decen-
tralized RL, we test our algorithm on the environment of the
Cooperative Navigation task in (Lowe et al. 2017), which is
built on the popular OpenAI Gym paradigm (Brockman et al.



agent 1

agent 2

agent 3

agent 5

agent 4

(a) Network structure
number of iterations

(b) Constrained reward (averaged)
number of iterations

(c) Objective reward

Figure 1: (a) Diagram of a decentralized safe RL system, where the green line denotes the communication graph G, the red star
represents the landmark, the blue circle stands for the agents; (b) long-term cumulative reward of the constraints v.s. the number
of iterations; (c) long-term cumulative reward of the objective functions v.s. the number of iterations. The initial stepsizes of
Safe Dec-PG and DSGT are both 0.1 and ci = 0.8, ∀i.

2016). The experiments were run on the NVIDIA Tesla
V100 GPU with 32GB memory. In the first experiment, we
have n = 5 agents aiming at finding their own landmarks,
and all agents are connected by a well-connected graph as
shown in Figure 1(a), where every agent can only exchange
their parameters θθθi with its neighbors through the commu-
nication channel (denoted by the green lines). Furthermore,
each agent has 5 action options: stay, left, right, up, and
down. We assume the states and actions of all the agents
to be globally observable. The goal of the teamed agents is
to find an optimal policy such that the long term discounted
cumulative reward averaged over the network is maximized
under a minimum number of collisions with other agents in
a long term perspective.

Environment Different from the existing simulation envi-
ronment, we create a new one based on the cooperative nav-
igation task, where we set the agent and landmark as pairs
and require that each agent only targets its own correspond-
ing landmark. The rewards considered in the objective func-
tion include two parts: i) the first one is based on the dis-
tance between the location of the node to its desired land-
mark, which is a monotonically decreasing function of the
distance, (i.e., the smaller the distance, the higher the reward
will be); ii) the second one is determined by the minimum
distance between two agents. If the distance between two
agents is lower than a threshold, then we consider that a col-
lision happens, and both of the agents will be penalized by
a large negative reward value, i.e., −1. Finally, the reward at
each agent is further scaled by different positive coefficients,
representing the heterogeneity, e.g., priority levels, of differ-
ent agents. The rewards considered in the constraints of (3)
are monotonically increasing functions of the minimum dis-
tance between two agents, i.e., the closer the two agents are,
the lower the reward will be. Here, since only the minimum
distance is taken into account at each node, so m = 1.

Parameters The policy at each agent is parametrized by
a neural network, where there are two hidden layers with
30 neurons in the first layer and 10 neurons in the second.
The states of each agent include its position and velocity.

Thus, the dimension of the input layer is 20, and the output
layer is 5. The discounting factor γ in the cumulative loss
is 0.99 in all the tests, and for each episode, the length of
the horizon approximation of PG is T = 20. Also, we run
K = 10 Monte Carlo trials independently to compute the
approximate PG at each iteration.

In this section, we only show the results of comparing
Safe Dec-PG and DSGT without safety considerations in
Figure 1(b) and Figure 1(c), and additional results with
more problem settings, e.g., larger networks, are includ-
ed in the supplemental materials. From Figure 1(b), it can
be observed that the averaged network constrained reward-
s obtained by Safe Dec-PG are much higher than the ones
achieved by DSGT and Safe Dec-PG converges faster than
DSGT as well. From the statistic perspective, this long term
cumulative rewards in the constraints could be interpreted as
some prior knowledge accounted in MDP. From Figure 1(c),
we can see that the rewards in objective function achieved
by both Safe Dec and DSGT are similar, implying that the
added constraints would not affect the loss of the objective
rewards.

Concluding Remarks

In this work, we have proposed the first algorithm of being
able to solve multi-agent CMDP problems, where the cu-
mulative rewards in both loss function and constraints are
included. By leveraging the primal-dual optimization frame-
work, the proposed Safe Dec-PG is to maximize the aver-
aged network long term cumulative rewards and take the
safety related constraints as well. Theoretically, we provide
the first convergence rate guarantees of the decentralized s-
tochastic gradient descent ascent method to an ϵ-FOSP of a
class of non-convex min-max problems at a rate of O(1/ϵ4).
Numerical results show that the obtained constraint rewards
by Safe Dec-PG are indeed much higher than the case where
the safety consideration is not incorporated without loss of
both convergence rate and final objective rewards.
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Preliminaries
In this section, we will provide some results that serve as the stepping stones for the subsequent analysis.

Inequalities and relations
In the proof of the main result, we will use several standard inequalities, which is given below.

1. Quadrilateral identity: ⟨
vr+1
i ,λλλr+1

i − λλλr
i

⟩
=

1

2

(
∥λλλr+1

i − λλλr
i ∥2 + ∥vr+1

i ∥2 − ∥λλλr
i − λλλr−1

i ∥2
)

(18)

where
vr+1
i , λλλr+1

i − λλλr
i − (λλλr

i − λλλr−1
i ). (19)

2. Young’s inequality with parameter β > 0:

⟨θθθ,θθθ′⟩ ≤ 1

2β
∥θθθ∥2 + β

2
∥θθθ′∥2. (20)

Notations
Before conducting the convergence analysis, we provide the following definitions and notations that will be useful in stating
the relations of the variables in the proofs.

Concatenation of individual vectors First, for notational simplicity, let θθθ1 and ϑϑϑ be concatenations of all individual ones of
the network given below:

θθθ ,

θθθ1...
θθθn

 ∈ Rnd, ϑϑϑ ,

ϑϑϑ1

...
ϑϑϑn

 ∈ Rnd, λλλ ,

λλλ1

...
λλλn

 ∈ Rnm. (21)

Then, the updates of parameter θθθ and PG tracking variable ϑϑϑ can be written as

θθθr+1 =Wθθθr − βrϑϑϑr, (22a)

ϑϑϑr+1 =Wϑϑϑr + ∇̂T,K
θθθ F (θθθr+1,λλλr)− ∇̂T,K

θθθ F (θθθr,λλλr) (22b)

where

∇̂T,K
θθθ F (θθθr,λλλr) ,

 ∇̂T,K
θθθ1

f1(θθθ
r
1,λλλ

r
1)

...
∇̂T,K

θθθn
fn(θθθ

r
n,λλλ

r
n))

 ∈ Rnd. (23)

Variables in consensus space Second, define the vectors in the consensus space:

θθθ , 1

n
1⊤θθθ, ϑϑϑ , 1

n
1⊤ϑϑϑ (24)

where 1 denotes the all-ones vector.
Note that ϑϑϑ0

i , 0,∀i. Multiplying by n−11⊤ on both sides of (22b), we have the following relation between ϑ̄ϑϑr and
∇̂T,K

θθθi
fi(θθθ

r
i ,λλλ

r
i ):

ϑ̄ϑϑr =
1

n

n∑
i=1

∇̂T,K
θθθi

fi(θθθ
r
i ,λλλ

r
i ). (25)

For simplicity, let

f(θ̄θθ,λλλ) , 1

n

n∑
i=1

fi(θ̄θθ,λλλi). (26)

1Note: notations θθθ in the supplemental material represents a different meaning as in the main text. Here, θθθ ∈ Rnd is the concatenation of
individual variables while θθθ ∈ Rd in the main text denotes the parameters of the policy in the centralized setting.



“Virtual” sequences Third, we define a virtual sequence that uses the exact PG to update the iterates:

¯
θθθr+1 ,W

¯
θθθr +∇θθθF (θθθr+1,λλλr)−∇θθθF (θθθr,λλλr), (27)

¯
θ̄θθr , 1

n

n∑
i=1

∇θθθi
fi(θθθ

r
i ,λλλ

r
i ). (28)

Here ∇θθθF (θθθr+1,λλλr) represents the concatenations of all exact individual PG (i.e., ∇θθθi
fi(θθθi,λλλi), ∀i), similar to (23), where

∇θθθi
fi(θθθi,λλλi) , ∇θθθi

JR
i (θθθi)− ⟨∇θθθi

JC
i (θθθi),λλλi⟩. Variable

¯
θθθr denotes the weights updated if the sampling size and the length of

the horizon approximate were infinitely large.

Relations between the Safe Dec sequence and the “Virtual” one Then, the averaged iterates can be expressed as:

θ̄θθr+1 = θ̄θθr − βr

n
1⊤ϑϑϑr (29)

= θ̄θθr − βr

n
1⊤(ϑϑϑr − 1

¯
ϑ̄ϑϑr + 1

¯
ϑ̄ϑϑr) (30)

= θ̄θθr − βr¯
¯
ϑϑϑr − βr

n
1⊤(ϑϑϑr − 1¯

¯
ϑϑϑr), ∀r (31)

where
¯
ϑ̄ϑϑr = n−1

∑n
i=1 ¯

ϑϑϑr
i . Equation (29) implies that the stochastic version of θ̄θθr can be interpreted as the case where θ̄θθr is

updated in a deterministic way plus an error term denoted by ϑϑϑr − 1¯
¯
ϑϑϑr that shows the disagreement between ϑϑϑr and averaged

{
¯
ϑϑϑr
i ,∀i}.

Definitions and notations
To better understand the forthcoming proofs, we summarize definitions of the parameters in Table 2.

Table 2: Definition of parameters used in the proofs

Parameter Expression/Definition Representation

θθθ (22a) weights of neural nets
ϑϑϑ (22b) gradient tracking variable

¯
ϑϑϑ (27) gradient tracking variable (virtual)
λλλ (12) dual variable
φ n/a constant within (0, 1)
ν n/a constant within (0, 1)
κ (49) constant
θθθ n−11⊤θθθ averaged weights
ϑϑϑ n−11⊤ϑϑϑ averaged tracked full gradient

¯
ϑ̄ϑϑ n−11⊤

¯
ϑϑϑ averaged full gradient (virtual)

f(θ̄θθ,λλλ) n−1
∑n

i=1 fi(θ̄θθ,λλλi) full gradient
ĝi(θθθi) ∇̂T,K

λλλi
fi(θθθi,λλλi) PG estimate with respect to dual

li(θθθ
r
i ,λλλ

r
i ) ⟨gi(θθθri )λλλr

i ⟩ loss (dual related)
σλ ∥λλλi∥ ≤ σλ, ∀i size of dual variable
N n/a total number of iterations

Notes: we allow for the number of constraint at each node be any number m, so function gi(θθθi) is mapping from Rd to Rm.
Further, we define

Fr , {θθθr, . . . , θθθ0,ϑϑϑr, . . . ,ϑϑϑ0,λλλr, . . . ,λλλ0} (32)

as the historical trajectories of the random variables up to the rth iteration.

Policy Gradient Estimate
In this section, we will provide some unique features of the PG estimate in terms of both biasedness and variance, which will
be useful in quantifying the convergence behavior of Safe Dec-PG. To be precise and rigorous, we introduce the following
lemmas.



Lemma 1 (Biased policy gradient). Suppose that Assumption 3 and Assumption 4 hold. For any θθθi and λλλi, the bias of the
corresponding policy gradients is bounded by∥∥∥E [∇̂T,K

θθθi
fi(θθθi,λλλi)−∇θθθi

fi(θθθi,λλλi)
]∥∥∥ ≤G′G(1 +mσλ)

(
T +

γ

1− γ

)
γT︸ ︷︷ ︸

,ϵf (T )

, ∀i. (33)

∥∥∥E [∇̂T,K
λλλi

fi(θθθi,λλλi)−∇λλλi
fi(θθθi,λλλi)

]∥∥∥ ≤
√
mGγT

1− γ︸ ︷︷ ︸
,ϵg(T )

, ∀i. (34)

Proof. Part I: for any θθθi ∈ Rd, it follows that∥∥∥E[∇̂T,K
θθθi

fi(θθθi,λλλi)−∇θθθi
fi(θθθi,λλλi)]

∥∥∥
(a)
=

∥∥∥∥∥E
[ ∞∑

t=T

1

K

K∑
k=1

(
t∑

τ=0

∇ log π(aaaτi,k|sssτk;θθθi)

)
γtRi(sss

t
k, aaa

t
k)

−
∞∑
t=T

1

K

K∑
k=1

⟨(
t∑

τ=0

∇ log π(aaaτi,k|sssτk;θθθi)

)
γtCi(sss

t
k, aaa

t
k),λλλi

⟩]∥∥∥∥∥ (35)

(b)

≤ 1

K

K∑
k=1

E

[∥∥∥∥∥
∞∑

t=T

(
t∑

τ=0

∇ log π(aaaτi,k|sssτk;θθθi)

)
γtRi(sss

t
k, aaa

t
k)

−
∞∑
t=T

⟨(
t∑

τ=0

∇ log π(aaaτi,k|sssτk;θθθi)

)
γtCi(sss

t
k, aaa

t
k),λλλi

⟩∥∥∥∥∥
]

(c)

≤ 1

K

K∑
k=1

E

[ ∞∑
t=T

∥∥∥∥∥
(

t∑
τ=0

∇ log π(aaaτi,k|sssτk;θθθi)

)
γtRi(sss

t
k, aaa

t
k)

−
∞∑
t=T

⟨(
t∑

τ=0

∇ log π(aaaτi,k|sssτk;θθθi)

)
γtCi(sss

t
k, aaa

t
k),λλλi

⟩∥∥∥∥∥
]

(d)

≤E

[ ∞∑
t=T

tγtG′G(1 +mσλ)

]
, (36)

where in (a) we first take expectation conditioned on index number k and then take expectation with respect to the randomness
of the kth sampled trajectory, (b) uses Jensen’s inequality, (c) follows from the triangle inequality, and (d) uses the bounds on
the loss and constraints as well as the partial gradients in Assumption 3. We can calculate the summation as

∞∑
t=T

tγt =

(
T

1− γ
+

γ

(1− γ)2

)
γT . (37)

Plugging (37) into (36) leads to∥∥∥E[∇̂T,K
θθθi

fi(θθθi,λλλi)−∇θθθi
fi(θθθi,λλλi)]

∥∥∥ ≤ G′G(1 +mσλ)

(
T +

γ

1− γ

)
γT

1− γ
(38)

from which the first part of the proof is complete.
Part II: Similarly, we also have

∥E[ĝi(θθθi)− gi(θθθi)]∥ =

∥∥∥∥∥E
[ ∞∑
t=T

1

K

K∑
k=1

γtCi(sss
t
k, aaa

t
k)

]∥∥∥∥∥ ≤ 1

K

K∑
k=1

E

∥∥∥∥∥
[ ∞∑
t=T

γtCi(sss
t
k, aaa

t
k)

]∥∥∥∥∥
≤
√
mG

∞∑
t=T

γr ≤
√
mGγT

1− γ
. (39)

Note that here Ci(·, ·) is a vector function with dimension m.



Remark 4. Lemma 1 indicates that the upper bounds of the PG biased in both the objective function and constraints are
shrinking in the order of the exponential with respect to discounted factor γ, i.e., O(γT ), implying that if T ∼ Ω(log(N)), then
γT ∼ O(1/N) for a constant N ≥ 1 2.

Lemma 2 (Variance of policy gradient). Suppose that Assumption 3 and Assumption 4 hold. For any θθθi and λλλi, the variance of
the corresponding policy gradients are bounded by

E
[∥∥∥∇̂T,K

θθθi
fi(θθθi,λλλi)−∇θθθi

fi(θθθi,λλλi)
∥∥∥2] ≤ 2 γ2G′2G2(1 +mσλ)

2

K(1− γ)4
+ 2ϵ2f (T )︸ ︷︷ ︸

,σ2
f (T,K)

,∀i.

E
[∥∥∥∇̂T,K

λλλi
fi(θθθi,λλλi)−∇λλλi

fi(θθθi,λλλi)
∥∥∥2] ≤ 2mG2

(1− γ)2K
+ 2ϵ2g(γ

T )︸ ︷︷ ︸
,σ2

g(T,K)

, ∀i.

Proof. Part I: we first decompose the error as

E
[∥∥∥∇̂T,K

θθθi
fi(θθθi,λλλi)−∇θθθi

fi(θθθi,λλλi)
∥∥∥2]

=E
[∥∥∥∇̂T,K

θθθi
fi(θθθi,λλλi)− E[∇̂T,K

θθθi
fi(θθθi,λλλi)] + E[∇̂T,K

θθθi
fi(θθθi,λλλi)]−∇θθθi

fi(θθθi,λλλi)
∥∥∥2]

(a)

≤2E
[∥∥∥∇̂T,K

θθθi
fi(θθθi,λλλi)− E[∇̂T,K

θθθi
fi(θθθi,λλλi)]

∥∥∥2]+ 2
∥∥∥E[∇̂T,K

θθθi
fi(θθθi,λλλi)]−∇θθθi

fi(θθθi,λλλi)
∥∥∥2

(b)

≤2E
[∥∥∥∇̂T,K

θθθi
fi(θθθi,λλλi)− E[∇̂T,K

θθθi
fi(θθθi,λλλi)]

∥∥∥2]+ 2ϵ2f (T ) (40)

where in (a) we have used Young’s inequality, and in (b) we have applied Lemma 1. Further, the first term can be bounded as

E
[∥∥∥∇̂T,K

θθθi
fi(θθθi,λλλi)− E[∇̂T,K

θθθi
fi(θθθi,λλλi)]

∥∥∥2] = 1

K
E
[∥∥∥∇̂T,1

θθθi
fi(θθθi,λλλi)− E[∇̂T,1

θθθi
fi(θθθi,λλλi)]

∥∥∥2] . (41)

Next, use

E
[∥∥∥∇̂T,1

θθθi
fi(θθθi,λλλi)− E[∇̂T,1

θθθi
fi(θθθi,λλλi)]

∥∥∥2]
(a)

≤E
∥∥∥∇̂T,1

θθθi
fi(θθθi,λλλi)

∥∥∥2
≤E

∥∥∥∥∥
T∑

t=0

(
t∑

τ=0

∇ log π(aaaτi,1|sssτ1 ;θθθi)

)
γtRi(sss

t
1, aaa

t
1)

−
T∑

t=0

⟨(
t∑

τ=0

∇ log π(aaaτi,1|sssτ1 ;θθθi)

)
γtCi(sss

t
1, aaa

t
1),λλλi

⟩∥∥∥∥∥
2

(b)

≤

∥∥∥∥∥
T∑

t=0

tγtG′G(1 +mσλ)

∥∥∥∥∥
2

(37)
≤ γ2G′2G2(1 +mσλ)

2

(1− γ)4
(42)

where (a) is true due to Var(X) ≤ EX2, (b) employs the bounds on the loss, constraints and dual variable as well as the partial
gradients in Assumption 3.

Therefore, we have

E
[∥∥∥∇̂T,K

θθθi
fi(θθθi,λλλi)−∇θθθi

fi(θθθi,λλλi)
∥∥∥2] ≤ 2 γ2G′2G2(1 +mσλ)

2

K(1− γ)4
+ 2ϵ2f (T ). (43)

2N is the total number of iterations in this paper



Part II: Similarly, we have

E
[∥∥∥∇̂T,K

λλλi
fi(θθθi,λλλi)−∇λλλi

fi(θθθi,λλλi)
∥∥∥2]

=E
[∥∥∥∇̂T,K

λλλi
fi(θθθi,λλλi)− E[∇̂T,K

λλλi
fi(θθθi,λλλi)] + E[∇̂T,K

λλλi
fi(θθθi,λλλi)]−∇λλλi

fi(θθθi,λλλi)
∥∥∥2] (44)

≤2E
[∥∥∥∇̂T,K

λλλi
fi(θθθi,λλλi)− E[∇̂T,K

λλλi
fi(θθθi,λλλi)]

∥∥∥2]+ 2
∥∥∥E[∇̂T,K

λλλi
fi(θθθi,λλλi)]−∇λλλi

fi(θθθi,λλλi)
∥∥∥2

(a)

≤ 2

K
E
[∥∥∥∇̂T,1

λλλi
fi(θθθi,λλλi)− E[∇̂T,1

λλλi
fi(θθθi,λλλi)]

∥∥∥2]+ 2ϵ2g(T ) (45)

where (a) follows from Lemma 1. And the first term in (45) can be upper bounded further by

E
[∥∥∥∇̂T,1

λλλi
fi(θθθi,λλλi)− E[∇̂T,1

λλλi
fi(θθθi,λλλi)]

∥∥∥2]

≤E
∥∥∥(ĴC

i )T,1(θθθi)
∥∥∥2 ≤ E

∥∥∥∥∥
T∑

t=0

γtCi(sss
t
1, aaa

t
1)

∥∥∥∥∥
2

≤ mG2

∥∥∥∥∥
T∑

t=1

γt

∥∥∥∥∥
2

≤ mG2

(1− γ)2
. (46)

Therefore, we have

E
[∥∥∥∇̂T,K

λλλi
fi(θθθi,λλλi)−∇λλλi

fi(θθθi,λλλi)
∥∥∥2] ≤ 2mG2

(1− γ)2K
+ 2ϵ2g(T ). (47)

Remark 5. It is obvious that the both two terms in σ2
f (T,K) and σ2

g(T,K) are shrinking with respect to either K or T , i.e.,
O(1/K) or O(γ2T ) (where γ < 1). Since the decreasing rate of O(1/K) is lower than O(γT ) for O(T ) ∼ O(K), we conclude
that σ2

f (T,K) and σ2
g(T,K) will be shrunk with respect to K in an order of O(1/K).

Sufficient Descent of Minimization
In this section, we will focus on the minimization and consensus part of Safe Dec.

Bounded variance of tracking variable
By defining the virtual sequence ϑϑϑr, we can have the following upper bound of the difference between ϑϑϑr and

¯
ϑϑϑr.

Lemma 3. (Bounded Variance) If the iterates {ϑϑϑr,∀r} are generated by Safe Dec-PG, under Assumption 1 to Assumption 4,
we have

E∥ϑϑϑr −
¯
ϑϑϑr∥2 ≤ nκσ2

f (T,K), (48)
where

κ , (1 + 2/(1− η))2. (49)

Proof. From (22b) and (27), we have

∥ϑϑϑr+1 −
¯
ϑϑϑr+1∥ (a)

=∥∇̂T,K
θθθ F (θθθr+1,λλλr)− ∇̂θθθF (θθθr+1,λλλr)∥

+ ∥W(ϑϑϑr −
¯
ϑϑϑr)− (∇̂T,K

θθθ F (θθθr,λλλr−1)− ∇̂T,K
θθθ F (θθθr,λλλr−1))∥ (50)

(b)

≤
∥∥∥∇̂T,K

θθθ F (θθθr+1,λλλr)− ∇̂θθθF (θθθr+1,λλλr)
∥∥∥

+
∥∥∥(W − I)

(
∇̂T,K

θθθ F (θθθr,λλλr−1)− ∇̂θθθF (θθθr,λλλr−1)
)∥∥∥

+
∥∥∥W (W − I)

(
∇̂T,K

θθθ F (θθθr−1,λλλr−2)− ∇̂θθθF (θθθr−1,λλλr−2)
)∥∥∥+ . . . , (51)

where in (b) we have used inequality (a) recursively.
Taking expectation on the random trajectories at the r + 1th iteration on both sides of (51) conditioned on Fr, we have

E∥ϑϑϑr+1 −
¯
ϑϑϑr+1∥

(a)

≤
√
nσf (T,K) + E

∥∥∥(W − I)
(
∇̂T,K

θθθ F (θθθr,λλλr−1)− ∇̂θθθF (θθθr,λλλr−1)
)∥∥∥

+ . . .+ E
∥∥∥Wr−1 (W − I)

(
∇̂T,K

θθθ F (θθθ1,λλλ0)− ∇̂θθθF (θθθ1,λλλ0)
)∥∥∥ (52)



where (a) follows from Lemma 2.
By leveraging this fact, we take expectation over Fr on both sides of (52) conditioned on Fr−1 for all r recursively, and

have
E∥ϑϑϑr+1 −

¯
ϑϑϑr+1∥ ≤

(
1 + ∥W − I∥+ ∥W(W − I)∥+ . . .+ ∥Wr−1(W − I)∥

)
nσf (T,K)

(a)

≤
(
1 +

2

1− η

)√
nσf (T,K), (53)

where in (a) we have used ∥W(W− I)∥ ≤ |
¯
λmax(W)|∥W− I∥ since (W− I)1 = 0 (i.e., W− I lies in the null space of 1)

and |
¯
λmax(W)| = η < 1 and ∥W − I∥ ≤ 2.

Descent of policy gradient
Lemma 4. (Descent Lemma regarding minimization) Under Assumption 1, Assumption 3, and Assumption 4, suppose that the
iterates {θθθri ,ϑϑϑr

i ,∀i} are generated by Safe Dec-PG. Then, there exists a constant φ ∈ (0, 1) such that

E
[
f(θ̄θθr+1,λλλr)

]
≤E

[
f(θ̄θθr,λλλr)

]
+

βr

2φ

L2

n
E
∥∥θθθr − 1θ̄θθr

∥∥2 − (βr −
(
βrφ

2
+ (βr)2L

))
E∥¯

¯
ϑϑϑr∥2

+
(βr)2Lσ2

f (T,K)

n
+ ϵf (T )E∥∇f(θ̄θθr,λλλr)∥. (54)

Proof. Under the gradient Lipschitz continuity of the objective function with respect to θθθ, we have

f(θ̄θθr+1,λλλr) ≤ f(θ̄θθr,λλλr) + ⟨∇f(θ̄θθr,λλλr), θ̄θθr+1 − θ̄θθr⟩+ L

2
∥θ̄θθr+1 − θ̄θθr∥2

(29)
= f(θ̄θθr,λλλr)− βr⟨∇f(θ̄θθr,λλλr),

¯
ϑ̄ϑϑr⟩ − βr⟨∇f(θ̄θθr,λλλr),

1

n
1⊤(ϑϑϑr − 1

¯
ϑ̄ϑϑr)⟩

+
(βr)2L

2
∥
¯
ϑ̄ϑϑr − 1

n
1⊤(ϑϑϑr − 1

¯
ϑ̄ϑϑr)∥2

(a)

≤f(θ̄θθr,λλλr) +
βr

2φ
∥∇f(θ̄θθr,λλλr)−

¯
ϑ̄ϑϑr∥2 + βrφ

2
∥
¯
ϑ̄ϑϑr∥2 − βr∥

¯
ϑ̄ϑϑr∥2

− βr⟨∇f(θ̄θθr,λλλr),
1

n
1⊤(ϑϑϑr −

¯
ϑ̄ϑϑr)⟩ − βr⟨∇f(θ̄θθr,λλλr),

1

n
1⊤(

¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr)⟩

+ (βr)2L∥
¯
ϑ̄ϑϑr∥2 + (βr)2L∥ϑ̄ϑϑr − 1

¯
ϑ̄ϑϑr∥2

≤f(θ̄θθr,λλλr) +
βr

2φ
∥∇f(θ̄θθr,λλλr)−

¯
ϑ̄ϑϑr∥2 + βrφ

2
∥
¯
ϑ̄ϑϑr∥2 − βr∥

¯
ϑ̄ϑϑr∥2

− βr⟨∇f(θ̄θθr,λλλr),
1

n
1⊤(ϑϑϑr − 1

¯
ϑ̄ϑϑr)⟩+ (βr)2L∥

¯
ϑ̄ϑϑr∥2 + (βr)2L∥ϑ̄ϑϑr − 1

¯
ϑ̄ϑϑr∥2, (55)

where (a) follows from Young’s inequality with parameter φ (that will be tuned later), and in the last inequality we have used
the fact that 1⊤(

¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr) = 0.

Applying Lemma 1, we can get the upper bound of ⟨∇f(θ̄θθr,λλλr), 1
n1

⊤(ϑϑϑr − 1
¯
ϑ̄ϑϑ
r
)⟩ in expectation as the following,

EFr+1 [⟨∇f(θ̄θθr,λλλr),
1

n
1⊤(ϑϑϑr − 1

¯
ϑ̄ϑϑ
r
)⟩|Fr]

(a)

≤ ∥∇f(θ̄θθr,λλλr)∥ϵf (T ), (56)

where in (a) we have used (25) and (28).
Next, taking expectation on both sides of (55) yields

E
[
f(θ̄θθr+1,λλλr)

] (a)

≤E
[
f(θ̄θθr,λλλr)

]
+

βr

2φ
E∥∇f(θ̄θθr,λλλr)−

¯
ϑ̄ϑϑr∥2 + βrφ

2
E∥

¯
ϑ̄ϑϑr∥2 − βrE∥

¯
ϑ̄ϑϑr∥2

+ (βr)2LE∥
¯
ϑ̄ϑϑr∥2 + (βr)2Lσ2

n
(b)

≤E
[
f(θ̄θθr,λλλr)

]
+

(
−βr +

βrφ

2
+ (βr)2L

)
E∥

¯
ϑ̄ϑϑr∥2

+
βr

2φ

L2

n
E∥θθθr − 1θ̄θθr∥2 +

(βr)2Lσ2
f (T,K)

n
+ ∥∇f(θ̄θθr,λλλr)∥ϵf (T ), (57)

where (a) is true because E∥ϑ̄ϑϑr −
¯
ϑ̄ϑϑr∥2 ≤ σ2

f (T,K)/n, and in (b) we use E∥∇f(θ̄θθr,λλλr) −
¯
ϑ̄ϑϑr∥2 ≤ L2

n E∥θθθr − 1θ̄θθr∥2 by
applying Assumption 1 and (28).



Network contraction
Second, after each step of communication or consensus procedure over the graph, we are able to obtain the following contraction
property of the consensus violation.
Lemma 5. (Consensus contraction) Under Assumption 1 to Assumption 4, we have the following contraction property of the
iterates generated by Safe Dec-PG:

1

n
E∥θθθr+1 − 1θ̄θθr+1∥2 ≤ 1

n
(1 + ν)η2E∥θθθr − 1θ̄θθr∥2 + 3

n

(
1 +

1

ν

)
(βr)2E∥

¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr∥2

+ 6

(
1 +

1

ν

)
(βr)2κσ2

f (T,K), (58)

and

1

n
E∥

¯
ϑϑϑr+1 − 1

¯
ϑ̄ϑϑr+1∥2 ≤ 4L2(βr)2

(
1 +

1

ν

)2

E∥
¯
ϑ̄ϑϑr∥2

+
1

n

(
L2η2(1 + ν)

(
1 +

1

ν

)
+ 4L2

(
1 +

1

ν

)2
)
E∥θθθr − 1θ̄θθr∥2

+
1

n

(
(1 + ν)η2 + 4L2(βr)2

(
1 +

1

ν

)2
)
E∥

¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr∥2

+ 4L2(βr)2
(
1 +

1

ν

)2

κσ2
f (T,K) (59)

where ν is some constant such that (1 + ν)η2 < 1, and κ is a constant defined in (3).

Proof. Part I: First, using the assumption on W, we can obtain the contraction property of the iterates disagreement of the
network, i.e.,

∥Wθθθr − 1θ̄θθr∥ = ∥W(θθθr − 1θ̄θθr)∥
(a)

≤ η∥θθθr − 1θ̄θθr∥ (60)

where (a) is true due to the fact that 1⊤(θθθr − 1θ̄θθr) = 0, i.e., θθθr − 1θ̄θθr ∈ col(W) and |
¯
λmax(W)| = η < 1.

Then, applying the definition of (22a) and Young’s inequality, we have

∥θθθr+1 − 1θ̄θθr+1∥2

=∥Wθθθr − βrϑϑϑr − 1(θ̄θθr − βrϑ̄ϑϑr)∥2

≤(1 + ν)∥Wθθθr − 1θ̄θθr∥2 +
(
1 +

1

ν

)
(βr)2∥ϑϑϑr − 1ϑ̄ϑϑr∥2

≤(1 + ν)η2∥θθθr − 1θ̄θθr∥2 + 3

(
1 +

1

ν

)
(βr)2∥ϑϑϑr −

¯
ϑϑϑr∥2

+ 3

(
1 +

1

ν

)
(βr)2∥

¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr∥2 + 3

(
1 +

1

ν

)
(βr)2∥1ϑ̄ϑϑr − 1

¯
ϑ̄ϑϑr∥2 (61)

in which ν ∈ (0, 1) is some constant parameter that will be chosen later. After taking exception on the both sides of (61) we
have the desired results by applying Lemma 3.

Part II: Recall that

∇θθθF (θθθr,λλλr) ,

 ∇θθθ1
f1(θθθ

r
1,λλλ

r
1)

...
∇θθθn

fn(θθθ
r
n,λλλ

r
n))

 . (62)

Similarly, applying the definition of
¯
ϑϑϑr shown in (27), we have

∥
¯
ϑϑϑr+1 − 1

¯
ϑ̄ϑϑr+1∥2

=

∥∥∥∥W¯
ϑϑϑr +∇θθθF (θθθr+1,λλλr)−∇θθθF (θθθr,λλλr)− 1

n
11⊤(W

¯
ϑϑϑr +∇θθθF (θθθr+1,λλλr)−∇θθθF (θθθr,λλλr))

∥∥∥∥2
≤(1 + ν)η2

∥∥
¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr
∥∥2 + (1 + 1

ν

)∥∥∇θθθF (θθθr+1,λλλr)−∇θθθF (θθθr,λλλr)
∥∥2 . (63)



Next, combining the following fact

∥∇θθθF (θθθr+1,λλλr)−∇θθθF (θθθr,λλλr)∥2

≤L2∥θθθr+1 − θθθr∥2

(22a)
= L2∥Wθθθr − θθθr − βrϑϑϑr∥2

=L2∥W(θθθr − 1θ̄θθr) + 1θ̄θθr − θθθr − βrϑϑϑr∥2

≤L2η2(1 + ν)∥θθθr − 1θ̄θθr∥2 + L2

(
1 +

1

ν

)
∥1θ̄θθr − θθθr − βrϑϑϑr∥2

≤L2η2(1 + ν)∥θθθr − 1θ̄θθr∥2 + 4L2

(
1 +

1

ν

)
∥θθθr − 1θ̄θθr∥2 + 4L2(βr)2

n2

(
1 +

1

ν

)
∥ϑϑϑr −

¯
ϑϑϑr∥2

+ 4L2(βr)2
(
1 +

1

ν

)
∥
¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr∥2 + 4L2(βr)2

(
1 +

1

ν

)
∥1

¯
ϑ̄ϑϑr∥2,

we have

∥
¯
ϑϑϑr+1 − 1

¯
ϑ̄ϑϑr+1∥2 ≤

(
(1 + ν)η2 + 4L2(βr)2

(
1 +

1

ν

)2
)
∥
¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr∥2

+

(
L2η2(1 + ν)

(
1 +

1

ν

)
+ 4L2

(
1 +

1

ν

)2
)
∥θθθr − 1θ̄θθr∥2

+ 4nL2(βr)2
(
1 +

1

ν

)2

∥
¯
ϑ̄ϑϑr∥2 + 4L2(βr)2

(
1 +

1

ν

)2

∥ϑϑϑr −
¯
ϑϑϑr∥2. (64)

Taking expectation on the both sides of (64) and applying Lemma 3 asserts that

E∥
¯
ϑϑϑr+1 − 1

¯
ϑ̄ϑϑr+1∥2 ≤

(
(1 + ν)η2 + 4L2(βr)2

(
1 +

1

ν

)2
)
E∥

¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr∥2

+

(
L2η2(1 + ν)

(
1 +

1

ν

)
+ 4L2

(
1 +

1

ν

)2
)
E∥θθθr − 1θ̄θθr∥2

+ 4nL2(βr)2
(
1 +

1

ν

)2

E∥
¯
ϑ̄ϑϑr∥2 + 4L2(βr)2

(
1 +

1

ν

)2

nκσ2
f (T,K), (65)

which completes the proof.

Ascent of Maximization
After quantifying the descent of the minimization and consensus steps that can provide, we will measure the ascent of maxi-
mization that might incur.

To begin with, we provide a preliminary lemma that indicates the upper bound of the inner product between ĝi(θθθ
r+1
i ) −

gi(θθθ
r+1
i ) and λλλr+1

i − λλλr
i in expectation.

Preliminary lemma
Lemma 6. Under Assumption 3 and Assumption 4, suppose that the iterates {θθθr,λλλr} are generated by Safe Dec-PG. Then, we
have

E
⟨
ĝi(θθθ

r+1
i )− gi(θθθ

r+1
i ),λλλr+1

i − λλλr
i

⟩
≤ ρσ2

g(T,K) + 2σλϵg(T ), ∀i. (66)

Proof. First, let us define
λ̂λλ
r

i = PΛ

(
(1− ργr)λλλr

i + ρgi(θθθ
r+1
i )

)
, (67)

where gi(θθθ
r+1
i ) = ci − JC

i (θθθr+1
i ).

Then, we have ⟨
ĝi(θθθ

r+1
i )− gi(θθθ

r+1
i ),λλλr+1

i − λλλr
i

⟩
=
⟨
ĝi(θθθ

r+1
i )− gi(θθθ

r+1
i ),λλλr+1

i − λλλr
i − (λ̂λλ

r+1

i − λλλr
i )
⟩

+
⟨
ĝi(θθθ

r+1
i )− gi(θθθ

r+1
i ), λ̂λλ

r+1

i − λλλr
i

⟩
. (68)



Taking expectation over Fr+1 conditioned on Fr, we have

E
⟨
ĝi(θθθ

r+1
i )− gi(θθθ

r+1
i ), λ̂λλ

r+1

i − λλλr
i

⟩ (a)

≤ 2σλϵg(T ), (69)

where in (a) we have used Assumption 4 and Lemma 1 or (39).
Plugging (69) in (68) with being taken expectation, we have

E[
⟨
ĝi(θθθ

r+1
i )− gi(θθθ

r+1
i ),λλλr+1

i − λλλr
i

⟩
]

(a)

≤E
[
ρ

2
∥ĝi(θθθr+1

i )− gi(θθθ
r+1
i )∥2 + 1

2ρ
∥λλλr+1

i − λλλr
i − (λ̂λλ

r+1

i − λλλr
i )∥2

]
(70)

(b)

≤ρσ2
g(T,K) + 2σλϵg(T ), (71)

where (a) follows from Young’s inequality, and the inequality in (b) is true due to non-expansiveness of the projection operator,
i.e.,

∥PΛ

(
(1− ργr)λλλr

i + ρgi(θθθ
r+1
i )

)
−PΛ

(
(1− ργr)λλλr

i + ρĝi(θθθ
r+1
i )

)
∥ ≤ ρ∥gi(θθθr+1

i )− ĝi(θθθ
r+1
i )∥. (72)

Balance between descent and ascent
To proceed, let

li(θθθ
r
i ,λλλ

r
i ) , ⟨gi(θθθri ),λλλr

i ⟩, ∀i. (73)
In the following, we will show the ascent of the loss function when the dual variable λλλ is updated.

Lemma 7. (Ascent Lemma regarding maximization). Under Assumption 1 to Assumption 4, suppose that iterates
{θθθri ,ϑϑϑr

i ,λλλ
r
i , ∀r, i} are generated by Safe Dec-PG. Then, we have

1

n

n∑
i=1

E[li(θθθr+1
i ,λλλr+1

i )− li(θθθ
r+1
i ,λλλr

i )]

≤ 1

2ρn
E∥λλλr − λλλr−1∥2 + ρL′2

2n
E∥θθθr+1 − θθθr∥2 −

(
γr−1

2n
− 1

ρn

)
E∥λλλr+1 − λλλr∥2

+
γr

2n
E∥λλλr+1∥2 − γr−1

2n
E∥λλλr∥2 + γr−1 − γr

2n
E∥λλλr+1∥2 + ρ

n
σ2
g(T,K) + 4ϵg(T )σλ. (74)

Proof. Let f̂i(θθθr+1
i ,λλλr+1

i ) ,
⟨
gi(θθθ

r+1
i ),λλλr+1

i

⟩
− 1(λλλr+1

i ) and ξri denote the subgradient of 1(λλλr
i ), where 1(·) denotes the

indicator function. Due to the fact that set Λ is convex, we know that the function f̂i(θθθ
r+1
i ,λλλr

i ) is concave with respect to λλλr
i .

Thus, we have

f̂i(θθθ
r+1
i ,λλλr+1

i )− f̂i(θθθ
r+1
i ,λλλr

i )

≤
⟨
gi(θθθ

r+1
i ),λλλr+1

i − λλλr
i

⟩
−
⟨
ξri ,λλλ

r+1
i − λλλr

i

⟩
=
⟨
gi(θθθ

r+1
i )− gi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩
+
⟨
gi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩
−
⟨
ξr+1
i ,λλλr+1

i − λλλr
i

⟩
−
⟨
ξri − ξr+1

i ,λλλr+1
i − λλλr

i

⟩
(a)
=

1

ρ
∥λλλr+1

i − λλλr
i ∥2 + γr

⟨
λλλr+1
i ,λλλr+1

i − λλλr
i

⟩
+
⟨
ξr+1
i − ξri ,λλλ

r+1
i − λλλr

i

⟩
(b)
=

1

ρ
∥λλλr+1

i − λλλr
i ∥2 + γr−1

⟨
λλλr
i ,λλλ

r−1
i − λλλr

i

⟩
+
⟨
ĝi(θθθ

r+1
i )− ĝi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩
(c)

≤ 1

2ρ
∥λλλr

i − λλλr−1
i ∥2 + ρL′2

2
∥θθθr+1

i − θθθri ∥2 −
(
γr−1

2
− 1

ρ

)
∥λλλr+1

i − λλλr
i ∥2

+
γr

2
∥λλλr+1

i ∥2 − γr−1

2
∥λλλr

i ∥2 +
γr−1 − γr

2
∥λλλr+1

i ∥2

+
⟨
ĝi(θθθ

r+1
i )− gi(θθθ

r+1
i ),λλλr+1

i − λλλr
i

⟩
+
⟨
gi(θθθ

r
i )− ĝi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩
, (75)

where in (a) we use the optimality condition of (12), i.e.,

ξr+1
i − ĝi(θθθ

r+1
i ) +

1

ρ
(λλλr+1

i − λλλr
i ) + γrλλλr+1

i = 0 (76)



and in (b) we use (76) again and get⟨
ξr+1
i − ξri ,λλλ

r+1
i − λλλr

i

⟩
=
⟨
ĝi(θθθ

r+1
i )− ĝi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩
− 1

ρ

⟨
vr+1
i ,λλλr+1

i − λλλr
i

⟩
−
⟨
γrλλλr+1

i − γr−1λλλr
i ,λλλ

r+1
i − λλλr

i

⟩
; (77)

and (c) is true because i) after applying the quadrilateral identity and Lipschitz continuity of function g(·), and thus we can
have ⟨

ĝi(θθθ
r+1
i )− ĝi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩
=
⟨
ĝi(θθθ

r+1
i )− gi(θθθ

r+1
i ) + gi(θθθ

r+1
i )− gi(θθθ

r
i ) + gi(θθθ

r
i )− ĝi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩
≤ρL′2

2
∥θθθr+1

i − θθθri ∥2 +
1

2ρ
∥λλλr+1

i − λλλr
i ∥2 +

⟨
ĝi(θθθ

r+1
i )− gi(θθθ

r+1
i ),λλλr+1

i − λλλr
i

⟩
+
⟨
gi(θθθ

r
i )− ĝi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩
; (78)

and also ii) the following equality

γr−1
⟨
λλλr
i ,λλλ

r+1
i − λλλr

i

⟩
=
γr−1

2

(
∥λλλr+1

i ∥2 − ∥λλλr
i ∥2 − ∥λλλr+1

i − λλλr
i ∥2
)

=
γr

2
∥λλλr+1

i ∥2 − γr−1

2
∥λλλr

i ∥2 −
γr−1

2
∥λλλr+1

i − λλλr
i ∥2 +

γr−1 − γr

2
∥λλλr+1

i ∥2. (79)

Note that the variable λλλr
i is projected into the feasible set at each iteration, so we have f̂i(θθθr+1

i ,λλλr+1
i ) = l(θθθr+1

i ,λλλr+1
i ). Taking

expectation on both sides of (75) and summing up over all the nodes, we have
n∑

i=1

E[li(θθθr+1
i ,λλλr+1

i )− li(θθθ
r+1
i ,λλλr

i )]

(a)
=

1

2ρ
E∥λλλr − λλλr−1∥2 + ρL′2

2
E∥θθθr+1 − θθθr∥2 −

(
γr−1

2
− 1

ρ

)
E∥λλλr+1 − λλλr∥2

+
γr

2
E∥λλλr+1∥2 − γr−1

2
E∥λλλr∥2 + γr−1 − γr

2
E∥λλλr+1∥2 + ρσ2

g(T,K) + 4nϵg(T )σλ, (80)

where in (a) we have applied Lemma 6 and also the following inequality:

E
⟨
gi(θθθ

r
i )− ĝi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩ (i)

≤ ∥E[gi(θθθri )− ĝi(θθθ
r
i )]∥2σλ

(ii)

≤ 2ϵg(T )σλ (81)

where (i) is true because there are two steps of expectations being taken: 1) we take expectation on Fr+1 conditioned on
Fr; 2) we take expectation on the randomness of the PG estimate in the constraints conditioned on Fr−1 and we have used
Assumption 3, and (ii) follows from Lemma 2. Then, the proof is complete.

Recursion of dual variables
Lemma 8. Under Assumption 1–Assumption 4, suppose that the sequence γr is decreasing and iterates {θθθri ,ϑϑϑr

i ,λλλ
r
i , ∀r, i} are

generated by Safe Dec-PG. Then, we have

Qr+1 ≤Qr +
2

ρn

(
1

γr
− 1

γr−1

)
E∥λλλr − λλλr−1∥2 + 2

ρn

(
γr−2

γr−1
− γr−1

γr

)
E∥λλλr∥2

− 2

ρn
E∥λλλr+1 − λλλr∥2 + 2L′2

ρn(γr)2
E∥θθθr+1 − θθθr∥2 + 4

ρnγr

(
ρσ2

g(T,K) + 4nϵg(T )σλ

)
, (82)

where

Qr , 2

ρ2nγr−1
E∥λλλr − λλλr−1∥2 − 2

ρn

(
γr−2

γr−1
− 1

)
E∥λλλr∥2 ≥ 0. (83)

Proof. From the optimality condition of the λλλi-subproblem at the r + 1th iteration, we have

−
⟨
ĝi(θθθ

r+1
i )− 1

ρ
(λλλr+1

i − λλλr
i )− γrλλλr+1

i ,λλλr+1
i − λλλi

⟩
≤ 0, ∀λλλi ∈ Λ, ∀i. (84)



Similarly, from the optimality condition of the λλλi-subproblem at the rth iteration, we have

−
⟨
ĝi(θθθ

r
i )−

1

ρ
(λλλr

i − λλλr−1
i )− γr−1λλλr

i ,λλλi − λλλr
i

⟩
≥ 0, ∀λλλi ∈ Λ,∀i. (85)

Plugging in λλλi = λλλr
i in (84) and λλλi = λλλr+1

i in (85) and combining them together, we have

1

ρ

⟨
vr+1
i ,λλλr+1

i − λλλr
i

⟩
+
⟨
γrλλλr+1

i − γr−1λλλr
i ,λλλ

r+1
i − λλλr

i

⟩
≤
⟨
ĝi(θθθ

r+1
i )− ĝi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩
, ∀i. (86)

First, note that we have the following relations⟨
γrλλλr+1

i − γr−1λλλr
i ,λλλ

r+1
i − λλλr

i

⟩
=⟨γrλλλr+1

i − γrλλλr
i + γrλλλr

i − γr−1λλλr
i ,λλλ

r+1
i − λλλr

i ⟩
=γr∥λλλr+1

i − λλλr
i ∥2 + (γr − γr−1)⟨λλλr

i ,λλλ
r+1
i − λλλr

i ⟩

=γr∥λλλr+1
i − λλλr

i ∥2 +
γr − γr−1

2

(
∥λλλr+1

i ∥2 − ∥λλλr
i ∥2 − ∥λλλr+1

i − λλλr
i ∥2
)

=
γr + γr−1

2
∥λλλr+1

i − λλλr
i ∥2 −

γr−1 − γr

2

(
∥λλλr+1

i ∥2 − ∥λλλr
i ∥2
)
. (87)

Second, substituting (87) into (86) and using (18), gives rise to

1

2ρ
∥λλλr+1

i − λλλr
i ∥2 −

γr−1 − γr

2
∥λλλr+1

i ∥2

≤ 1

2ρ
∥λλλr

i − λλλr−1
i ∥2 − 1

2ρ
∥vr+1

i ∥2 − γr−1 − γr

2
∥λλλr

i ∥2 −
γr−1 + γr

2
∥λλλr+1

i − λλλr
i ∥2

+ ⟨ĝi(θθθr+1
i )− ĝi(θθθ

r
i ),λλλ

r+1
i − λλλr

i ⟩
(a)

≤ 1

2ρ
∥λλλr

i − λλλr−1
i ∥2 − γr−1 − γr

2
∥λλλr

i ∥2 − γr∥λλλr+1
i − λλλr

i ∥2 +
⟨
ĝi(θθθ

r+1
i )− ĝi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩
(b)

≤ 1

2ρ
∥λλλr

i − λλλr−1
i ∥2 − γr−1 − γr

2
∥λλλr

i ∥2 − γr∥λλλr+1
i − λλλr

i ∥2 +
L′2

2γr
∥θθθr+1

i − θθθri ∥2

+
γr

2
∥λλλr+1

i − λλλr
i ∥2 +

⟨
ĝi(θθθ

r+1
i )− gi(θθθ

r+1
i ),λλλr+1

i − λλλr
i

⟩
+
⟨
ĝi(θθθ

r
i )− gi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩
, (88)

where (a) is true because 0 < γr < γr−1, and in (b) we have used Young’s inequality, Lipschitz continuity, i.e.,⟨
ĝi(θθθ

r+1
i )− ĝi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩
=
⟨
ĝi(θθθ

r+1
i )− gi(θθθ

r+1
i ) + gi(θθθ

r+1
i )− gi(θθθ

r
i ) + gi(θθθ

r
i )− ĝi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩
.

≤γr

2
∥λλλr+1

i − λλλr
i ∥2 +

⟨
ĝi(θθθ

r+1
i )− gi(θθθ

r+1
i ),λλλr+1

i − λλλr
i

⟩
+
⟨
ĝi(θθθ

r
i )− gi(θθθ

r
i ),λλλ

r+1
i − λλλr

i

⟩
+

L′2

2γr
∥θθθr+1

i − θθθr+1
i ∥2. (89)

Third, taking expectation on both sides over (88) and summing over i, we have

1

2ρ
E∥λλλr+1 − λλλr∥2 − γr−1 − γr

2
E∥λλλr+1∥2

(a)

≤ 1

2ρ
E∥λλλr − λλλr−1∥2 − γr−1 − γr

2
E∥λλλr∥2 − γr

2
E∥λλλr+1 − λλλr∥2

+
L′2

2γr
E∥θθθr+1 − θθθr∥2 + ρσ2

g(T,K) + 4nϵg(T )σλ, (90)

where (a) uses the same argument as in (81) to quantify E
⟨
gi(θθθ

r
i )− ĝi(θθθ

r
i ),λλλ

r+1 − λλλr
⟩

and Lemma 6.



Finally, multiplying by 4 and dividing by ργr on the both sides of the above equation, we arrive at

2

ρ2γr
E∥λλλr+1 − λλλr∥2 − 2

ρ

(
γr−1

γr
− 1

)
E∥λλλr+1∥2

≤ 2

ρ2γr
E∥λλλr − λλλr−1∥2 − 2

ρ

(
γr−1

γr

)
E∥λλλr∥2 − 2

ρ
E∥λλλr+1 − λλλr∥2 + 2L′2

ρ(γr)2
E∥θθθr+1 − θθθr∥2

+
4n

γrρ
4σg(T,K)σλ (91)

≤ 2

ρ2γr−1
E∥λλλr − λλλr−1∥2 − 2

ρ

(
γr−2

γr−1
− 1

)
E∥λλλr∥2

+
2

ρ

(
1

γr
− 1

γr−1

)
E∥λλλr − λλλr−1∥2 + 2

ρ

(
γr−2

γr−1
− γr−1

γr

)
E∥λλλr∥2

− 2

ρ
E∥λλλr+1 − λλλr∥2 + 2L′2

ρ(γr)2
E∥θθθr+1 − θθθr∥2 + 4

ργr

(
ρσ2

g(T,K) + 4nϵg(T )σλ

)
. (92)

Potential Function and Convergence Rate

From Lemma 4, it can be seen that the descent lemma is built upon the function value evaluated at the consensus space, i.e., θ̄θθr,
while the ascent lemma is based on the function value evaluated at individual variables at each node, i.e., {ϑϑϑr

i ,λλλ
r
i }. To show the

convergence of the iterates, we need some function to link the descent provided by the primal variable update and the ascent
obtained by the dual update and the contraction achieved by the PG tracking update. In other words, the step sizes involved in
(10) and (13) are required to be controlled properly so that ascent of the (potential) function value is dominated by the descent
and contraction.

Combining the descent lemma (i.e., Lemma 4), contraction lemma (i.e., Lemma 5), and ascent lemma (i.e., Lemma 7) leads
to the following lemma.

Potential function

Lemma 9. (Potential/Lyapunov-like function) Under Assumption 1 to Assumption 4, suppose that the decreasing sequence γr

satisfies

1

γr+1
− 1

γr
≤ 1

5
, (93)

0 < φ < 1, ν ≤
(

1
2η2 − 1

)
/2, and βr ≤ min{β1, β2, β2}, where β1, β2, β2 are defined in (118) – (120). Then, there exist

constants a1, a2, a3 > 0 such that

Pr+1 ≤Pr − a1β
rE∥

¯
ϑ̄ϑϑr∥2 − a2

n
E∥θθθr − 1θ̄θθr∥2 − a3

βr

n
E∥

¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr∥2 − Ur

10ρn
E∥λλλr+1 − λλλr∥2

+
2Ur

ρn

(
γr−2

γr−1
− γr−1

γr

)
E∥λλλr∥2 + Ur γ

r−1 − γr

2n
E∥λλλr+1∥2

+ (Ur − Ur+1)
γr

2n
E∥λλλr+1∥2 + (Ur+1 − Ur)

1

n

n∑
i=1

Eli(θ̄θθr+1,λλλr+1
i ) + Ur σ

2
λ

n

+ Ur

(
ρσ2

g(T,K)

n
+ 4ϵg(T )σλ

)(
1 +

4

γrρ

)
+ ∥∇f(θ̄θθr,Urλλλr)∥ϵf (T ) + σ′′2(T,K) (94)

where the potential function Pr is defined as below

Pr , UrWr + E[f(θ̄θθr,Urλλλr)] +
1

n
E∥θθθr − 1θ̄θθr∥2 + βr

n
E∥

¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr∥2,



and

Rr ,Qr − γr

2n
E∥λλλr∥2 + 1

2ρn
E∥λλλr − λλλr−1∥2, (95a)

Wr ,Rr +
1

n

(
ρL′2

2
+

2L′2

ρ(γr)2

)
E∥θθθr − 1θ̄θθr∥2, (95b)

Ur , ρ(γr+1)2

ρ(γ0)2(3ρL2 + L′2) + 12L2

ν

1 + ν
, (95c)

σ′′2(T,K) ,3

(
2κ+

1

n

)
(βr)2σ2

f (T,K) + 4L2(βr)3
(
1 +

1

ν

)2

κσ2
f (T,K)

+
(βr)2Lσ2

f (T,K)

n
+ 6

(
1 +

1

ν

)
(βr)2κσ2

f (T,K). (95d)

From Lemma 9, it is clear that the size of PG, i.e., ∥
¯
ϑ̄ϑϑr∥, consensus violation, i.e., ∥θθθr − 1θ̄θθr∥, tracking accuracy, i.e.,

∥
¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr∥, and difference of the dual variable at two successive iterates, i.e., ∥λλλr+1 −λλλr∥ will jointly determine the progress

of Safe Dec-PG. Note that the all the constants in front of these terms are negative. Therefore, potential function Pr is decreasing
up to some error terms that can be bounded by shrinking the stepsize after applying the telescoping sum.

Proof. First step: Constructing the potential function for the maximization step.
Combining Lemma 7 and Lemma 8, we can have

Rr+1 +
1

n

n∑
i=1

Eli(θθθr+1
i ,λλλr+1

i )

≤Rr +
1

n

n∑
i=1

Eli(θθθr+1
i ,λλλr

i )−
1

2ρn
E∥λλλr+1 − λλλr∥2 + 1

n

(
ρL′2

2
+

2L′2

ρ(γr)2

)
E∥θθθr+1 − θθθr∥2

+
γr−1 − γr

2n
E∥λλλr+1∥2 + 2

ρn

(
1

γr+1
− 1

γr

)
E∥λλλr+1 − λλλr∥2 + 2

ρn

(
γr−2

γr−1
− γr−1

γr

)
E∥λλλr∥2

+
( ρ
n
σ2
g(T,K) + 4ϵg(T )σλ

)(
1 +

4

γrρ

)
, (96)

where

Rr+1 = Qr+1 − γr

2n
E∥λλλr+1∥2 + 1

2ρn
E∥λλλr+1 − λλλr∥2. (97)

When 1/γr+1 − 1/γr ≤ 1/5, we have −1/(2ρ) + 2
ρ (1/γ

r+1 − 1/γr) < 0.
Thus, we can get

Rr+1 +
1

n

n∑
i=1

Eli(θθθr+1
i ,λλλr+1

i )

≤Rr +
1

n

n∑
i=1

Eli(θθθr+1
i ,λλλr

i ) +
1

n

(
ρL′2

2
+

2L′2

ρ(γr)2

)
E∥θθθr+1 − θθθr∥2 − 1

10ρn
E∥λλλr+1 − λλλr∥2

+
γr−1 − γr

2n
E∥λλλr+1∥2 + 2

ρn

(
γr−2

γr−1
− γr−1

γr

)
E∥λλλr∥2

+
1

n

(
ρσ2

g(T,K) + 4nϵg(T )σλ

)(
1 +

4

γrρ

)
. (98)

Second step: get the upper bound of ∥θθθr+1 − θθθr∥2 in terms of the disagreement between θθθr and θ̄θθr

Note that
∥θθθr+1 − θθθr∥2 ≤ 3∥θθθr+1 − 1θ̄θθr+1∥2 + 3n∥θ̄θθr+1 − θ̄θθr∥2 + 3∥θθθr − 1θ̄θθr∥2, (99)

and

∥θ̄θθr+1 − θ̄θθr∥2 (29)
= (βr)2∥ϑ̄ϑϑr∥2, E∥ϑ̄ϑϑr −

¯
ϑ̄ϑϑr∥2 ≤

σ2
f (T,K)

n
. (100)



Combining (99) and (100), we can have

1

n
E∥θθθr+1 − θθθr∥2 ≤ 3

n
E∥θθθr+1 − 1θ̄θθr+1∥2 + 3

n
E∥θθθr − 1θ̄θθr∥2 + 3(βr)2∥

¯
ϑ̄ϑϑr∥2 + 3

n
(βr)2σ2

f (T,K). (101)

Third step: replace E∥θθθr+1 − θθθr∥2 in (98) by a recursive formula in terms of E∥θθθr+1 − 1θ̄θθr+1∥2 and E∥θθθr − 1θ̄θθr∥2.
Adding

3

n

(
ρL′2

2
+

2L′2

ρ(γr+1)2

)
︸ ︷︷ ︸

,R′r+1

E∥θθθr+1 − 1θ̄θθr+1∥2 (102)

on the both sides of (98) and applying (101), we arrive at

Rr+1 +
1

n

n∑
i=1

Eli(θθθr+1
i ,λλλr+1

i ) +R′r+1E∥θθθr+1 − 1θ̄θθr+1∥2

≤Rr +
1

n

n∑
i=1

Eli(θθθr+1
i ,λλλr

i ) +R′rE∥θθθr − 1θ̄θθr∥2

+
3

n

(
ρL′2 +

2L′2

ρ

(
1

(γr)2
+

1

(γr+1)2

))
E∥θθθr+1 − 1θ̄θθr+1∥2

+ 3(βr)2
(
ρL′2

2
+

2L′2

ρ(γr)2

)
E∥

¯
ϑ̄ϑϑr∥2 − 1

10ρn
E∥λλλr+1 − λλλr∥2

+
γr−1 − γr

2n
E∥λλλr+1∥2 + 2

ρn

(
γr−2

γr−1
− γr−1

γr

)
E∥λλλr∥2 + 3(βr)2

n

(
ρL′2

2
+

2L′2

ρ(γr)2

)
σ2
f (T,K)

+
( ρ
n
σ2
g(T,K) + 4ϵg(T )σλ

)(
1 +

4

γrρ

)
. (103)

Fourth step: make a connection between the changes of the loss functions evaluated at the individual node, i.e.,
li(θθθ

r+1
i ,λλλr+1

i )− li(θθθ
r+1
i ,λλλr

i ),∀i, and the changes of the loss function evaluated at the consensus space, i.e., li(θ̄θθ
r+1,λλλr+1

i )−
li(θ̄θθ

r+1,λλλr
i ), ∀i.

According to the Lipschitz continuity of gi(·),∀i and Young’s inequality, we have⟨
λλλr+1
i , gi(θ̄θθ

r+1)
⟩
−
⟨
λλλr+1
i , gi(θθθ

r+1
i )

⟩
≤ ∥λλλr+1

i ∥2

2
+

L′2∥θθθr+1
i − θ̄θθr+1

i ∥2

2
, (104)

which implies

n∑
i=1

li(θ̄θθ
r+1,λλλr+1

i )−
n∑

i=1

li(θ̄θθ
r+1,λλλr

i )

≤
n∑

i=1

li(θθθ
r+1
i ,λλλr+1

i )−
n∑

i=1

li(θθθ
r+1
i ,λλλr

i ) +
∥λλλr+1∥2 + ∥λλλr∥2

2
+ L′2∥θθθr+1 − 1θ̄θθr+1∥2

(a)

≤
n∑

i=1

li(θθθ
r+1
i ,λλλr+1

i )−
n∑

i=1

li(θθθ
r+1
i ,λλλr

i ) + σ2
λ + L′2∥θθθr+1 − 1θ̄θθr+1∥2 (105)

where in (a) we apply Assumption 4.
Fifth step: merge step 3 and step 4 to construct a potential function.
Let

Wr+1 , Rr+1 +R′r+1E∥θθθr+1 − 1θ̄θθr+1∥2 = Rr+1 +
3

n

(
ρL′2

2
+

2L′2

ρ(γr+1)2

)
E∥θθθr+1 − 1θ̄θθr+1∥2 (106)

and

Sr = 3

(
ρL′2 +

2L′2

ρ

(
1

(γr)2
+

1

(γr+1)2

))
. (107)



Combining (103) and (105), we have

Wr+1 +
1

n

n∑
i=1

Eli(θ̄θθr+1,λλλr+1
i )

≤Wr +
1

n

n∑
i=1

Eli(θ̄θθr+1,λλλr
i ) +

1

n
(Sr + L′2)E∥θθθr+1 − 1θ̄θθr+1∥2

+ 3(βr)2
(
ρL′2

2
+

2L′2

ρ(γr)2

)
E∥

¯
ϑ̄ϑϑr∥2 − 1

10ρn
E∥λλλr+1 − λλλr∥2 + γr−1 − γr

2n
E∥λλλr+1∥2

+
2

ρn

(
γr−2

γr−1
− γr−1

γr

)
E∥λλλr∥2 + σ2

λ +
3(βr)2

n

(
ρL′2

2
+

2L′2

ρ(γr)2

)
σ2
f (T,K)

+
( ρ
n
σ2
g(T,K) + 4ϵg(T )σλ

)(
1 +

4

γrρ

)
. (108)

Applying (58), we have

Wr+1 +
1

n

n∑
i=1

Eli(θ̄θθr+1,λλλr+1
i )

≤Wr +
1

n

n∑
i=1

Eli(θ̄θθr+1,λλλr
i ) +

1

n
(Sr + L′2)(1 + ν)η2E∥θθθr − 1θ̄θθr∥2

+
3

n
(Sr + L′2)

(
1 +

1

ν

)
(βr)2E∥

¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr∥2 + 3(βr)2

(
ρL′2

2
+

2L′2

ρ(γr)2

)
E∥

¯
ϑ̄ϑϑr∥2

− 1

10ρn
E∥λλλr+1 − λλλr∥2 + γr−1 − γr

2n
E∥λλλr+1∥2 + 2

ρn

(
γr−2

γr−1
− γr−1

γr

)
E∥λλλr∥2

+

(
2(Sr + L′2)

(
1 +

1

ν

)
κ+

1

n

(
ρL2

2
+

2L2

ρ(γr)2

))
3(βr)2σ2

f (T,K)

+ σ2
λ +

( ρ
n
σ2
g(T,K) + 4ϵg(T )σλ

)(
1 +

4

γrρ

)
. (109)

Sixth step: scale the current potential function by Ur such that it will have some contraction property in (117).
Note that

ν

1 + ν

1

Sr + L′2 ≥ ν

1 + ν

1

3ρL2 + L′2 + 6L2

ρ

(
1

(γr)2 + 1
(γr+1)2

) (110)

≥ ν

1 + ν

ρ(γr+1)2

ρ(γr+1)2(3ρL2 + L′2) + 12L2
(111)

≥ ν

1 + ν

ρ(γr+1)2

ρ(γ0)2(3ρL2 + L′2) + 12L2
= Ur. (112)

Thus, it is straightforward that
Ur(Sr + L′2)(1 + ν) ≤ ν. (113)

Then, multiplying by Ur both sides of (109), we can easily obtain

UrWr+1 +
1

n

n∑
i=1

UrE
[
li(θ̄θθ

r+1,λλλr+1
i )

]
(a)

≤UrWr +
1

n

n∑
i=1

UrE
[
li(θ̄θθ

r+1,λλλr
i )
]
+

νη2

n
E∥θθθr − 1θ̄θθr∥2 + 3(βr)2

n
E∥

¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr∥2

+ (βr)2
ν

1 + ν
E∥

¯
ϑ̄ϑϑr∥2 − Ur

10ρn
E∥λλλr+1 − λλλr∥2 + Ur γ

r−1 − γr

2n
E∥λλλr+1∥2

+
2Ur

ρn

(
γr−2

γr−1
− γr−1

γr

)
E∥λλλr∥2

+ 3

(
2κ+

1

n

)
(βr)2σ2

f (T,K) + Urσ2
λ + Ur

( ρ
n
σ2
g(T,K) + 4ϵg(T )σλ

)(
1 +

4

γrρ

)
, (114)



where (a) uses the fact that 3(ρL2/2 + 2L2

ρ(γr)2 ) < Sr and ν < 1.

From (83), (97), and (106), we know

Wr+1 =
1

n

(
2

ργr
+

1

2ρ

)∥∥λλλr+1 − λλλr
∥∥2 + 3

n

(
ρL2

2
+

2L2

ρ(γr+1)2

)∥∥∥θθθr+1 − 1θ̄θθr+1
∥∥∥2

− 2

ρn

(
γr−1

γr
− 1

)∥∥λλλr+1
∥∥2 − γr

2n

∥∥λλλr+1
∥∥2 . (115)

Since γr is diminishing, Ur is also decreasing. Then, by adding 1
n

∑n
i=1 Ur+1Eli(θ̄θθr+1,λλλr+1

i ) and Ur+1Wr+1 both sides of
(114), we have

Ur+1Wr+1 +
1

n

n∑
i=1

Ur+1E
[
li(θ̄θθ

r+1,λλλr+1
i )

]
(a)

≤UrWr +
1

n

n∑
i=1

UrE
[
li(θ̄θθ

r+1,λλλr
i )
]
+

νη2

n
E∥θθθr − 1θ̄θθr∥2 + 3(βr)2

n
E∥

¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr∥2

+ (βr)2
ν

1 + ν
E∥

¯
ϑ̄ϑϑr∥2 − Ur

10ρn
E∥λλλr+1 − λλλr∥2 + Ur γ

r−1 − γr

2n
E∥λλλr+1∥2

+
2Ur

ρn

(
γr−2

γr−1
− γr−1

γr

)
E∥λλλr∥2 + 3

(
2κ+

1

n

)
(βr)2σ2

f (T,K) + Urσ2
λ

+ Ur
( ρ
n
σ2
g(T,K) + 4ϵg(T )σλ

)(
1 +

4

γrρ

)
+ (Ur − Ur+1)

γr

2n
∥λλλr+1∥2

+ (Ur+1 − Ur)
1

n

n∑
i=1

E
[
li(θ̄θθ

r+1,λλλr+1
i )

]
(116)

where (a) uses the fact that Ur+1Wr+1 − UrWr+1 ≤ (Ur − Ur+1)γr∥λλλr+1∥2/(2n).

Seventh step: merge descent (Lemma 4) and contraction (Lemma 5) into the potential function.



Combining (54), (58), and (59), gives rise to

Ur+1Wr+1 + E
[
f(θ̄θθr+1,Ur+1λλλr+1)

]
+

1

n
E
∥∥∥θθθr+1 − 1θ̄θθr+1

∥∥∥2 + βr+1

n
E
∥∥∥
¯
ϑϑϑr+1 − 1

¯
ϑ̄ϑϑr+1

∥∥∥2︸ ︷︷ ︸
,Pr+1

≤UrWr + E
[
f(θ̄θθr,Urλλλr)

]
+

1

n
E∥θθθr − 1θ̄θθr∥2 + βr

n
E∥

¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr∥2

− βr

(
1−

(
φ

2
+ βrL+ 4L2βr

(
1 +

1

ν

)2

+ βr ν

1 + ν

))
︸ ︷︷ ︸

,a1

E∥
¯
ϑ̄ϑϑr∥2

− 1

n

(
1−

(
(1 + ν)η2 + νη2 +

βr

2φ

L2

n
+ βr

(
L2η2(1 + ν)

(
1 +

1

ν

)
+ 4L2

(
1 +

1

ν

)2
)))

︸ ︷︷ ︸
,a2

E∥θθθr − 1θ̄θθr∥2

− βr

n

(
1−

(
(1 + ν)η2 + 4L2(βr)2

(
1 +

1

ν

)2

+ 3

(
1 +

1

ν

)
βr + 3βr

))
︸ ︷︷ ︸

,a3

E∥
¯
ϑϑϑr − 1

¯
ϑ̄ϑϑr∥2

− Ur

10ρn
E∥λλλr+1 − λλλr∥2 + Ur γ

r−1 − γr

2n
E∥λλλr+1∥2

+
2Ur

ρn

(
γr−2

γr−1
− γr−1

γr

)
E∥λλλr∥2 + 3

(
2κ+

1

n

)
(βr)2σ2

f (T,K) + Urσ2
λ

+ Ur
( ρ
n
σ2
g(T,K) + 4ϵg(T )σλ

)(
1 +

4

γrρ

)
+ 4L2(βr)3

(
1 +

1

ν

)2

κσ2
f (T,K)

+
(βr)2Lσ2

f (T,K)

n
+ ∥∇f(θ̄θθr,Urλλλr)∥ϵf (T ) + 6

(
1 +

1

ν

)
(βr)2κσ2

f (T,K)

+ (Ur − Ur+1)
γr

2n
E∥λλλr+1∥2 + (Ur+1 − Ur)

1

n

n∑
i=1

Eli(θ̄θθr+1,λλλr+1
i ), (117)

where we have also used the fact that βr is decreasing, i.e., (βr+1 − βr)∥
¯
ϑϑϑr+1 − 1

¯
ϑ̄ϑϑr+1∥2 < 0.

To get the descent of the potential function, we require that a1, a2, a3 all be positive.
First, if

φ < 1, βr ≤ 1

2(L+ 4L2(1 + 1/ν)2 + ν/(1 + ν))
, β1, (118)

then, we have a1 > 0.
Second, let ν1 , 1

2

(
1

2η2 − 1
)

. Obviously, when ν < ν1, we have (1 + 2ν)η2 < 1/2. In this case, if

βr ≤
1
2

L2

2φn + L2η2(1 + ν)(1 + ν−1) + 4L2(1 + ν−1)2
, β2, (119)

then, we have a2 > 0.
Third, let ν2 , 1/(2η2)− 1. If ν < ν2, we have (1 + ν)η2 < 1/2. In this case, if

βr <
−3(2 + 1/ν) +

√
(3(2 + 1/ν))2 + 8L2(1 + 1/ν)2

8L2(1 + 1/ν)2
, β3, (120)

then, we have a3 > 0.
We take φ < 1, ν ≤ min{ν1, ν2} = 1

2

(
1

2η2 − 1
)

and βr ≤ min{β1, β2, β3}.



Remark 6. Lemma 9 indicates that there is an upper bound of βr (which is independent on n). Later, we will see that βr

should also be a decreasing sequence. For simplicity, we take the decreasing sequence {βr, ∀r} (the following choice can
guarantee the convergence of the algorithm) as

βr , β0

√
r
, (121)

where β0 , min{β1, β2, β3}.

Proof of Theorem 1

The constructed potential function measures the progress of the algorithm. From Lemma 9, it is clear that Pr would be decreas-
ing if the size of the positive error terms could be dominated by the size of the negative terms. Next, we provide the detailed
technical proof of the convergence rate of Safe Dec-PG as the following.

Proof. First step: get an upper bound of the optimality gap:

G({θθθri ,λλλr
i , ∀i})

=

∥∥∥∥∥ 1n
n∑

i=1

∇fi(θθθ
r
i ,λλλ

r
i )

∥∥∥∥∥︸ ︷︷ ︸
minimization error

+
1

n

n∑
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∥λλλr
i − PΛ[λλλ

r
i + gi(θθθ

r
i )]∥︸ ︷︷ ︸

maximization error

+
1

n

n∑
i=1

∥∥θθθri − θ̄θθr
∥∥

︸ ︷︷ ︸
consensus violation error

=
∥∥
¯
ϑ̄ϑϑr
∥∥+ 1

n

n∑
i=1

∥∥λλλr+1
i − λλλr

i

∥∥+ ∥λλλr+1
i − PΛ(λλλ

r
i + g(θθθri ))∥+ ∥θθθri − θ̄θθr∥ (122)

≤∥
¯
ϑ̄ϑϑr∥+ 1

n

n∑
i=1

∥θθθri − θ̄θθr∥+ ∥λλλr+1
i − λλλr

i ∥

+
1

n

n∑
i=1

∥∥∥∥PΛ[(λλλ
r+1
i + ĝi(θθθ

r+1
i ))− 1

ρ
(λλλr+1

i − λλλr
i )− γrλλλr+1

i ]− PΛ[λλλ
r
i + gi(θθθ

r
i )]

∥∥∥∥
≤∥

¯
ϑ̄ϑϑr∥+ 1

n

n∑
i=1

∥θθθri − θ̄θθr∥+
(
1 +

1

ρ

)
∥λλλr+1

i − λλλr
i ∥+ ∥ĝi(θθθr+1

i )− gi(θθθ
r
i )∥+ γr∥λλλr+1

i ∥

≤∥
¯
ϑ̄ϑϑr∥+ 1

n

n∑
i=1

(
1 +

1

ρ

)
∥λλλr+1

i − λλλr
i ∥+ ∥ĝi(θθθr+1

i )− gi(θθθ
r+1
i )∥+ ∥gi(θθθr+1

i )− gi(θθθ
r
i )∥

+ γr∥λλλr+1
i ∥+ ∥θθθri − θ̄θθr∥. (123)

Then, we have

E[G2({θθθri ,λλλr
i , ∀i})]

(a)

≤ 4n+ 2

n2

(
E∥

¯
ϑ̄ϑϑr∥2 + (γr)2E∥λλλr+1∥2 + E∥θθθr − 1θ̄θθr∥2

+

(
1 +

1

ρ

)2

E∥λλλr+1 − λλλr∥2 + L′2E∥θθθr+1 − θθθr∥2 + nσ2
g(T,K)

)
(101)
≤ 4n+ 2

n2

(
(1 + 3nL′2(βr)2)E∥

¯
ϑ̄ϑϑr∥2 +

(
1 +

1

ρ
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E∥λλλr+1 − λλλr∥2 + nσ2
g(T,K)

+ (γr)2E∥λλλr+1∥2 + 3L′2(E|θθθr+1 − 1θ̄θθr+1∥2 + E∥θθθr − 1θ̄θθr∥2) + 3(βr)2L′2σ2
f (T,K)

)
(124)

where (a) applies Young’s inequality, Lipschitz continuity and Lemma 2.



Due to the fact that ∥λλλr∥2 is upper bounded by nσ2
λ, by applying (58), we have

E[G2(θθθr,λλλr)]

≤4n+ 2

n2

(
(1 + 3nL′2(βr)2)E∥

¯
ϑ̄ϑϑr∥2 +

(
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1

ρ

)2

E∥λλλr+1 − λλλr∥2

+ 3L′2 ((1 + ν)η2 + 1
)
E∥θθθr − 1θ̄θθr∥2

+ 9L′2
(
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1

ν

)
(βr)2E∥

¯
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¯
ϑ̄ϑϑr∥2 + 18L′2

(
1 +

1

ν
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(βr)2κσ2

f (T,K)

+ nσ2
g(T,K) + (γr)2nσ2

λ + 3(βr)2L′2σ2
f (T,K)

)
. (125)

Note that βr is decreasing, we only need to take

Θ ,
(
4 +

2

n

)
max

{
1

n
+ 3L′2(β0)2,

(
1 +

1

ρ

)2

, 3L′2(1 + (1 + ν)η2), 9L′2
(
1 +

1

ν

)
(β0)2

}
(126)

so that

E[G2(θθθr,λλλr)]

≤Θ
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¯
ϑ̄ϑϑr∥2 + 1

n
E∥λλλr+1 − λλλr∥2 + 1
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E∥θθθr − 1θ̄θθr∥2 + 1

n
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¯
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︸ ︷︷ ︸
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ν

)
κ+ 3

)
L′2(βr)2σ2

f (T,K) + nσ2
g(T,K) + (γr)2nσ2

λ

)
. (127)

Second step: get an upper bound of Hr

From (117), we have

βra1E∥
¯
ϑ̄ϑϑr∥2 + a2

1

n
E∥θθθr − 1θ̄θθr∥2 + a3
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4
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E
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⟩
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(
1 +

1

ν

)2

κ

)
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Here, we require that the shrinking speed of Ur should be not slower than βr. Taking Φ , min
{
a1, a2/β

0, a3,
U0

β010ρ

}
, we

have

βrΦHr ≤(Pr −Pr+1)

+ U0 γ
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2
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2U0

ρ

(
γr−2
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σ2
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2
σ2
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( ρ
n
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γrρ

)
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n
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3
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L

n
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(
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ν

)
κ+ 4L2βr

(
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ν
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κ

)
(βr)2σ2

f (T,K), (129)



where U0 = ρ(γ1)2

ρ(γ0)2(3ρL2+L′2)+12L2
ν

1+ν and ∥λλλr∥2 ≤ nσ2
λ.

Third step: apply the telescoping sum
Combining with (127), we have

βrE[G2(θθθr,λλλr)]

≤Θ

Φ

(
(Pr − Pr+1) + U0 γ

r−1 − γr

2
σ2
λ +

2U0

ρ

(
γr−2

γr−1
− γr−1

γr
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σ2
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γ0

2
σ2
λ

+ Ur

(
ρσ2

g(T,K)

n
+ 4ϵg(T )σλ

)(
1 +

4

γrρ

)
+ Urσ2

λ + ϵf (T )E∥∇f(θ̄θθr,Urλλλr)∥
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+
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(
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L

n
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)
κ+ 4L2βr

(
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)2
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)
(βr)2σ2

f (T,K).

)

+

(
4n+ 2

n

((
18

(
1 +

1

ν

)
κ+ 3L′2

)
(βr)2

σ2
f (T,K)

n
+ σ2

g(T,K) + (γr)2σ2
λ

))
βr. (130)

Note that the reward value is bounded (denoted by G), so we have

∥gi(θθθi)∥ ≤ ∥ci∥+
∥∥∥E[∑

t≥0

γtCi(sss
t, aaat)|sss0, πθθθi

]∥∥∥ ≤ max{∥ci∥}+
G

1− γ︸ ︷︷ ︸
,G̃

, ∀i. (131)

Similarly, since the partial derivatives of the log function of the policies are also bounded, we have

∥∇θθθi
fi(θθθi,Urλλλi)∥ ≤E

[ ∞∑
t=0

∥∥∥∥∥(
t∑
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∇ log π(aaaτi |sssτ ;θθθi)
)
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t, aaat)

−
∞∑
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⟨( t∑
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∇ log π(aaaτi |sssτ ;θθθi)
)
γtCi(sss

t, aaat),Urλλλi

⟩∥∥∥∥∥
]

≤G′G(1 +mU0σλ)

(1− γ)2
, G̃′, ∀i. (132)

Applying the telescoping sum over (130), gives rise to
N∑
r=1

βrE[G2(θθθr,λλλr)]

≤Θ

Φ

(
P0 − PN+1 + γ0U0σ2

λ +
2U0

ρ

γ0

γ1
σ2
λ + U0G̃σλ︸ ︷︷ ︸

,I1

+
N∑
r=1

Ir
2Ur +NG̃′ϵf (T ) + I3

N∑
r=1

(βr)2
)

+
N∑
r=1

Ir
4β

r + I5
N∑
r=1

βr, (133)

where

Ir
2 ,

(
ρσ2

g(T,K)

n
+ 4ϵg(T )σλ

)(
1 +

4

γrρ

)
+ σ2

λ, (134)

I3 ,
(
3

(
2κ+

1

n

)
+

L

n
+ 6

(
1 +

1

ν

)
κ+ 4L2β0

(
1 +

1

ν

)2

κ

)
σ2
f (T,K), (135)

Ir
4 ,4n+ 2

n

((
18

(
1 +

1

ν

)
κ+ 3L′2

)
(βr)2

σ2
f (T,K)

n
+ (γr)2σ2

λ

)
, (136)

I5 ,4n+ 2

n
σ2
g(T,K). (137)



Note that due to the boundness of Λ we have that UrWr is lower bounded, implying that the potential Pr is lower bounded
since the rewards are also bounded.

Next, we will have the results of the convergence rate of Safe Dec-PG.
Fourth step: the output of the solution is picked randomly, where the corresponding distribution is denoted by Pr. Let the
probability mass function Pr be chosen such that Pr = βr/

∑N
r=1 β

r for any r = 1, . . . , N . Then, we have

E[G2(θθθr
′
,λλλr′)]

≤Θ

Φ

I1∑N
r=1 β

r
+

Θ

Φ

∑N
r=1 Ir

2Ur∑N
r=1 β

r
+

Θ

Φ

I3
∑N

r=1(β
r)2∑N

r=1 β
r

+
Θ

Φ

NG̃′ϵf (T )∑N
r=1 β

r
+

∑N
t=1 Ir

4β
r∑N

r=1 β
r

+ I5. (138)

According to Lemma 9, we choose βr = β0/
√
r, i.e., O(1/

√
r), where β0 = min{β1, β2, β3}. By incorporating condition

(93), we can select γr = 1/
√
r + 5, i.e., O(1/

√
r). Then, we have

N∑
r=1

βr ∼ O(
√
N),

N∑
r=1

(βr)2 ∼ O(log(N)),
N∑
r=1

γr ∼ O(
√
N),

N∑
r=1

(γr)2 ∼ O(log(N)). (139)

In the following, we can quantify the size of each term in (138) respectively:
I Since Θ,Φ, I1 are constants, the first term in (138) is decaying in an order of O(1/

√
N).

I From (134) and (95c), we know that

Ir
2Ur (140)

=
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ρσ2

g(T,K)

n
+ 4ϵg(T )σλ

)(
1 +

4

γrρ

)
+ σ2

λ

)
ρ(γr+1)2

ρ(γ0)2(3ρL2 + L′2) + 12L2

ν

1 + ν

≤

((
ρσ2

g(T,K)

n
+ 4ϵg(T )σλ

)(
ρ(γr)2 + 4γr

)
+ σ2

λρ(γ
r)2

)
1

ρ(γ0)2(3ρL2 + L′2) + 12L2

ν

1 + ν

≤

(
ρσ2

g(T,K)

n + 4ϵg(T )σλ

)
4γr

ρ(γ0)2(3ρL2 + L′2) + 12L2

ν

1 + ν
+

ρ(γr)2
(

ρσ2
g(T,K)

n + 4ϵg(T )σλ

)
(1 + σ2

λ)

ρ(γ0)2(3ρL2 + L′2) + 12L2

ν

1 + ν
,

so we have
Ir
2Ur ∼ O

(√
N
(
σ2
g(T,K) + ϵg(T )

))
+O(log(N)). (141)

Thus, the second term in (138) is decreasing in an order of O(log(N)/
√
N + σ2

g(T,K) + ϵg(T )) in total.
I Since Θ,Φ, I3 are constants, from (139) we have that the third term in (138) is diminishing in a rate of O(log(N)/

√
N).

I We take T ∼ Ω(log(N)), resulting in ϵf (T ) ∼ O(1/N). Consequently, the fourth term in (138) is shrinking in an order of
O(1/

√
N). Otherwise, the size of this term is O(ϵf (T )

√
N).

I From (136), we know that Ir
4 ∼ O(r). Hence, the fifth term in (138) is reducing at least in a rate of O(log(N)/

√
N).

I I5 is a constant, so the size of the sixth term in (138) is O(σ2
g(T,K)).

It is clear that the error terms in I5, Ir
2Ur and NG̃′ϵf (T ) are functions of ϵf (T ), ϵg(T ), σ2

g(T,K). From Lemma 1 and
Lemma 2, we know that when T ∼ Ω(log(N)), the sizes of terms ϵf (T ) and ϵg(T ) are O(1/N) and the sizes of terms
σ2
f (T,K) and σ2

g(T,K) become O(1/K)
In summary, we have

E[G2(θθθr
′
,λλλr′)] ≤ O

(
log(N)√

N

)
+ σ′2(T,K) (142)

where σ′2(T,K) is a function of σ2
g(T,K), ϵf (T ) and ϵg(T ). When T ∼ Ω(log(N)), σ′2(T,K) ∼ O(1/K). Note that

σ′2(T,K) is O(1) with respect to n.
Remark 7. From Theorem 1 it is concluded that Safe Dec-PG converges to a neighborhood of the ϵ-FOSP, where the radius

of the neighborhood is in an order of O(1/K). When the batch size is large, the radius of the neighborhood becomes small,
which is standard in stochastic algorithms.

Proof of Corollary 1
Proof. Substituting K ∼ O(

√
N) into Lemma 2, we will have σ2

g(T,K) ∼ O(1/
√
N) immediately when T ∼ Ω(log(N)).

From (142), we can have the desired the result.



Additional Numerical Results
In this section, we provide additional numerical results showing the performance of Safe Dec-PG for the cooperative navigation
task created in this work. The parameters of Safe Dec-PG are β0 = 0.08 and ρ = 20. The length of the horizon approximation
is T = 20 and the number of independent trajectories is K = 10. The topology of the communication network is the Erdős–
Rényi random graph with density 0.4, and each node combines its neighbor’s weights equally though matrix W. We will depict
both rewards in the objective and rewards in the constraints versus the number of iterations. Different from the rewards in the
objective function, the rewards in the constrained part are functions of the minimum distance between two agents. Here, the
reward at node i in the constraint is constructed as a monotonically increasing function of the minimum distance between each
node and its neighbors. Therefore, the safety constraints considered in this case are written as JC

i (θθθi) ≥ ci, ∀i and the average
reward is n−1

∑n
i=1 J

C
i (θθθi). The experiments were run on the NVIDIA Tesla V100 GPU with 32GB memory.

Safe Dec-PG v.s. centralized PG without safety concerns

number of iterations

(a) Average reward (constraint)
number of iterations

(b) Reward (objective)

Figure 2: Reward v.s. number of iterations, where ci = 1.4,∀i.

number of iterations

(a) Average constrained reward
number of iterations

(b) Objective reward

Figure 3: Decentralized and centralized implementation of Safe Dec-PG, where ci = 1.2, ∀i.



number of iterations

(a) Average constrained reward
number of iterations

(b) Objective reward

Figure 4: Reward with respect to different desired bounds in the constraints

In this section, we compare Safe Dec-PG and the centralized case without the safety long-term cumulative reward consider-
ations where n = 5. From Figure 2(a), it can be observed that Safe Dec-PG outputs higher averaged constrained rewards as it
converges compared with the case where there are no safety concerns introduced. Further, it can be seen from Figure 2(b) that
Safe Dec-PG achieves a similar convergence rate but a slightly higher objective reward than centralized PG. The reason would
be that adding the long-term reward constraint is more or less equivalent to introducing some prior knowledge on avoiding the
collision.

Safe Dec-PG v.s. its centralized counterpart
Then, we further compare the convergence rate of Safe Dec-PG with its centralized counterpart. In general, when an algorithm
is implemented over a network, it needs more number of iterations to achieve the same accuracy compared with its centralized
counterpart. The reason is that the consensus process may take some extra iterations so that each agent can learn enough
information from its neighbors. In this case, it can be observed that Safe Dec-PG has almost the same performance as its
centralized counterpart, indicating implementing Safe Dec-PG over a graph is as good as the centralized processing. This
implies that the inaccurate PG estimate and the shapes of the objective and constraint functions dominate the performance of
the algorithm rather than the weights disagreement (or consensus violation). From another perspective, it is suggested that in
this case the PG or gradient tracking technique makes the consensus process of the algorithm very efficient as illustrated in the
literature (Tang et al. 2018; Lu et al. 2019; Chang et al. 2020) so that the consensus error is in orders of magnitude smaller than
other errors that affect the convergence behaviors of the algorithm.

Different desired bounds in the constraints
Further, we show in Figure 4 the convergence behavior of Safe Dec-PG with respect to different desired bounds of the con-
straints. It is clear from Figure 4(a) that the larger the constants ci are, the higher the rewards will be achieved from a long-term
perspective, which is expected. The rewards obtained in the objective in these three cases are similar, where the rewards achieved
in the case ci = 1.4 are slightly lower than in the other two cases at the beginning. The reason is that introducing this constraint
may affect the searching space of the algorithm so that the convergence rate empirically becomes slower. Hence, we comment
that adding a (probably large) ci does not imply that the constraints will always help in improving the convergence performance.
In this work, it is by no means that Safe Dec-PG will give a higher achievable reward for maximizing the objective function
compared with other existing works. But it is desired that the safety constraints can be incorporated in the MARL systems.

Safe Dec-PG v.s. DSGT on Larger Network
Additionally, we also compare the Safe Dec-PG and DSGT without safety constraints on a larger network with n = 10 agents,
where the communication graph is again randomly generated. It can be seen from Figure 5 that Safe Dec-PG can achieve high
constrained rewards and even with relatively higher objective rewards. This observation indicates that the advantages of Safe
Dec-PG will not be affected by increasing the number of agents, which is consistent with our theoretical analysis.

From the above numerical results, we conclude that Safe Dec-PG is able to solve decentralized safe problems both effectively
and efficiently, shedding light of implementing the safe RL algorithm over graphs.
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Figure 5: Comparison between Safe Dec-PG and DSGT without safety constraints, where ci = 1, ∀i.


